hdu-1874-畅通工程续

版权声明:本文为博主原创文章,转载或者二次加工请加链接 https://blog.csdn.net/Big_laoshu/article/details/78615663

原文链接: hdu-1874-畅通工程续
原文:
畅通工程续

Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 58577 Accepted Submission(s): 22000

Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。

Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0 < N<200,0< M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B< N,A!=B,0< X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T< N),分别代表起点和终点。

Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.

Sample Input
3 3
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2

Sample Output
2
-1

试题分析:一道基本属于模板的dijkstra算法的题。套用即可

图按邻接矩阵来存放的AC代码:

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=205;
const int maxnum=10000;
int arr[maxn][maxn];//存放点与点权值
bool v[maxn];//标记是否访问
int dist[maxn];//计算最短路径长度
int n,m;
void kijkstra(int s)
{
    int i,j;
    memset(v,false,sizeof(v));
    v[s]=true;
    for(i=0;i<n;i++)
        dist[i]=arr[s][i];

    int mincost;
    int minindex;
    for(i=0;i<n;i++)
    {
        if(i==s)
            continue;
        mincost=maxnum;
        for(j=0;j<n;j++)
        {
            if(dist[j]<mincost&&v[j]==false)
            {
                mincost=dist[j];
                minindex=j;
            }
        }
        v[minindex]=true;
        for(j=0;j<n;j++)
        {
            if(v[j]==false&&arr[minindex][j]+mincost<dist[j])
            {
                dist[j]=arr[minindex][j]+mincost;
            }
        }
    }
}
int main()
{
    int i,j,a,b,x,s,t;
    while(scanf("%d %d",&n,&m)!=EOF)
    {
        for(i=0;i<n;i++)
        {
            for(j=0;j<n;j++)
            {
                arr[i][j]=maxnum;
                if(i==j)
                    arr[i][j]=0;
            }
        }   
        for(i=0;i<m;i++)
        {
            scanf("%d %d %d",&a,&b,&x);
            if(x<arr[a][b]) //真坑,一个无向图权值可能有几种情况 
            {
                arr[a][b]=x;
                arr[b][a]=x;
            }   
        }
        scanf("%d %d",&s,&t);
        kijkstra(s);
        if(dist[t]!=maxnum)
        {
            printf("%d\n",dist[t]);
        }
        else
        {
            printf("-1\n");
        }
    }
    return 0;
} 

利用vector和优先队列解题的AC代码:

//将点与点与权值存于vector中,优先队列按照权值从小到大排,方便计算最短路径 
#include<iostream>
#include<cstdio>
#include<queue>
#include<vector>
using namespace std;

const int maxn=200;
const int maxnum=10000;
struct edge{ //边的结构体
    int v,cost;
    edge(int v1,int c){
        v=v1;cost=c;
    }
};
struct node{ //点的结构体
    int u,cost;
    node(){}
    node(int u1,int c)
    {
        u=u1;cost=c;
    }
    bool operator < (const node k)const
    {
        return cost>k.cost;
    }
};
vector<edge>g[maxn+1];

int dist[maxn+1];
bool vis[maxn+1];
int n,m;
void dijkstra(int start)
{
    priority_queue<node> q;
    int i;
    for(i=0;i<=n;i++)
    {
        dist[i]=maxnum;
        vis[i]=false;
    }
    dist[start]=0;
    q.push(node(start,0));
    node f;

    while(!q.empty())
    {
        f=q.top();
        q.pop();

        int u=f.u;
        if(!vis[u])
        {
            vis[u]=true;

            int len=g[u].size();
            for(int i=0;i<len;i++)
            {
                int v2=g[u][i].v;

                if(vis[v2])
                    continue;

                int tempcost=g[u][i].cost;
                int nextdist=dist[u]+tempcost;

                if(dist[v2]>nextdist)
                {
                    dist[v2]=nextdist;
                    q.push(node(v2,dist[v2]));
                }
            }
        }
    }


}
int main()
{
    int i,a,b,x,s,t;
    while(scanf("%d %d",&n,&m)!=EOF&&(n+m))
    {
        for(i=0;i<m;i++)
        {
            scanf("%d %d %d",&a,&b,&x);
            g[a].push_back(edge(b,x));
            g[b].push_back(edge(a,x));
        }
        scanf("%d %d",&s,&t);
        dijkstra(s);
//      for(i=0;i<n;i++)
//          printf("%d ",dist[i]);
        printf("%d\n",(dist[t]<maxnum)?dist[t]:-1);

        for(i=0;i<=n;i++)//必须释放存储 
            g[i].clear();

    }
    return 0;
} 

没有更多推荐了,返回首页