Python练习——判断正整数是否为质数的三种方法

判断正整数是否为质数的三种方法

本文参考《如何判断一个正整数是否为质数的三种方法 | 附Python程序》结合自身理解,作为笔记发布。如果对你有帮助,点赞关注哦!

一、基本概念

质数(又称素数): 一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数。按照规定,1不算素数,最小的素数是2,其后依次是3、5、7、11等等。
在这里插入图片描述
我们可以发现其中有些质数紧紧挨在一起(中间只隔了一个数),而且成对出现,我们称作孪生质数:
在这里插入图片描述
综上所述,我们可以初步得出质数规律

大于等于5的质数,均分布在6及6的倍数的两侧

二、python代码

1)定义判断法:

根据定义,因为质数除了1和本身之外没有其他因数,所以判断n是否为质数,根据定义直接判断从2到n-1是否存在n的因数即可:

def hasPrime(num):
    if num > 1:
        for j in range(2, num):
            if num % j == 0:
                return False
        else:
            return True
    else:
        return False

2)定义法改进:

定义方法,明显存在效率极低的问题。对于每个数n,其实并不需要从2判断到n-1,我们知道,一个数若可以进行因数分解,那么分解时得到的两个数一定是一个小于等于sqrt(n),一个大于等于sqrt(n),据此,上述代码中并不需要遍历到n-1,遍历到sqrt(n)即可,因为若sqrt(n)左侧找不到因数,那么右侧也一定找不到因数。

def isPrime_1(num):
    if num == 2 or num == 3:
        return True
    elif num > 4:
        #优化定义法检验
        for j in range(2, int(sqrt(num))+1):
            if num%j == 0:
                return False
        else:
            return True
    else:
        return False

3)质数规律判断法

还记得质数规律吗?
大于等于5的质数一定和6的倍数相邻。例如5和7,11和13,17和19等等。

证明:令x≥1,将大于等于5的自然数表示如下:

······6x-2,6x-1,6x,6x+1,6x+2,6x+3,6x+4,6x+5,6x+6,6x+7······
也就是
······2(3x-1),6x-1,6x,6x+1,2(3x+1),3(2x+1),2(3x+2),6x+5,6(x+1),6(x+1)+1······

可以看到,不在6的倍数两侧的数(除了6x-1,6x+1),即6x+2,6x+3,6x+4······,提取公因数后:2(3x+1),3(2x+1),2(3x+2),能被2整除,所以它们一定不是质数,同时6x本身也非质数。显然,素数如果出现只可能出现在6x的相邻两侧。这里要注意的一点是,在6的倍数相邻两侧并不是一定就是质数,但是不在6的倍数的两侧一定不是质数

根据以上规律,判断质数可以6个为单元快进,即将方法(2)循环中i++步长加大为6,加快判断速度,代码如下:

def isPrime(num):
    if num == 2 or num == 3:
        return True
    if num % 6 == 1 or num % 6 == 5:
        for i in range(2, int(sqrt(num))+1):
            if i % num == 0:
                print(i)
                return False
        else:
            return True
    else:
        return False

三、知识拓展

通过调用以上函数,我们可以写出输出某个范围内质数的程序。然而,同时存在两种算法可直接输出给定值的所有素数。有幸读到质数判定和质数筛法一文,其中很详细的介绍了两种筛选质数的方法:埃拉托色尼筛选法/埃式筛法线性筛法/欧拉筛法。本文不再赘述,做知识的搬运工,感兴趣的朋友可移步学习,欢迎留言讨论!

都看到这里了,给个点赞关注吧!

### Python 素数练习题示例代码 以下是几个关于 Python素数计算的练习题目及其对应的实现代码: #### 题目 1:判断一个整数是否素数 给定一个正整数 `n`,编写函数来判断该数字是否素数。 ```python def is_prime(n): if n < 2: return False for i in range(2, int(n ** 0.5) + 1): # 只需检查到平方根即可 if n % i == 0: return False return True ``` 此代码片段定义了一个名为 `is_prime` 的函数,用于检测输入的整数是否素数[^2]。如果输入值小于 2,则返回 `False`;否则遍历从 2 到 √n 范围内的所有可能因子,若有任意因子能够整除 `n`,则说明它不是素数。 --- #### 题目 2:找出指定范围内的所有素数 给出两个整数值作为区间边界 `[min_value, max_value]`,打印出这个闭区间的全部素数。 ```python def find_primes_in_range(min_value, max_value): primes = [] for num in range(max(2, min_value), max_value + 1): if is_prime(num): primes.append(num) return primes # 测试调用 print(find_primes_in_range(10, 50)) ``` 上述程序利用之前编写的辅助函数 `is_prime()` 来逐一验证范围内每一个候选者是否满足条件,并最终形成列表形式的结果集合^。 --- #### 题目 3:查找回文质数 寻找既是素数又是回文数的小于十万的第一个一百个这样的特殊数字。 ```python import math def check_prime(number): """Check whether a number is prime.""" if number < 2: return False limit = int(math.sqrt(number)) + 1 for divisor in range(2, limit): if number % divisor == 0: return False return True def palindrome_check(number_as_string): length = len(number_as_string) mid = length // 2 for index in range(mid): if number_as_string[index] != number_as_string[-index - 1]: return False return True count = found_count = start_number = 0 while found_count < 100: str_num = str(start_number) if check_prime(start_number) and palindrome_check(str_num): print(f"{start_number}", end=" ") found_count += 1 if not (found_count % 10): print() start_number += 1 ``` 这里实现了更复杂的逻辑组合——不仅需要确认目标对象属于简单意义上的不可分解单元(即素性),还需要其字符串表示具备镜像对称属性才能被纳入统计范畴内[^3]^。 --- ### 总结 以上展示了三种不同层次难度有关处理自然数领域里重要概念之一—“Prime Numbers”的实际应用场景下的解决方案。每一段脚本都经过精心设计以确保清晰易懂的同时兼顾效率考量。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值