ZOJ3647计数原理

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3646

首先补充个结论 ,在坐标系中已知一个线段的两个端点做标 且是整点 然后求在两点间有多少个整点?

假设A点在B点下边 设A(x1,y1),B(x2,y2);则其整点数为gcd(x2-x1,y2-y1);

定义 s=从所有点中取出三个点的方案数

        s1=在横着的或者竖着的边上的方案数;

        s2=在对角线上的方案数

        s=C((n+1)*(m+1),3)   s1=C(n+1,3)*(m+1) + C(m+1,3)*(n+1);

        s2=边长大于二的矩形的个数乘以2;

#include<iostream>
#include<cstdlib>
#include<stdio.h>
using namespace std;
typedef long long ll;
int gcd(int a,int b)
{
    return b==0? a : gcd(b,a%b);
}
long long com(int n,int r)
{
    if(n<r)
        return 0;
    if(n-r<r)
        r=n-r;//C(n,r)==C(n,n-r);
    int i,j;
    long long ret=1;
    for(i=0,j=1;i<r;i++)
    {
       ret*=(n-i);
       for(;j<=r&&ret%j==0;j++)
       {
           ret/=j;
       }
    }
    return ret;
}
int main()
{
    int n,m;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        ll ans=0;
        ans=com((n+1)*(m+1),3);
      for(int i=2;i<=n;i++)
        for(int j=2;j<=m;j++)
        {
            ans-=(ll)(gcd(i,j)-1)*(n-i+1)*(m-j+1)*2;
        }
        ans-=com(n+1,3)*(m+1);
        ans-=com(m+1,3)*(n+1);
        cout<<ans<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值