题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3646
首先补充个结论 ,在坐标系中已知一个线段的两个端点做标 且是整点 然后求在两点间有多少个整点?
假设A点在B点下边 设A(x1,y1),B(x2,y2);则其整点数为gcd(x2-x1,y2-y1);
定义 s=从所有点中取出三个点的方案数
s1=在横着的或者竖着的边上的方案数;
s2=在对角线上的方案数
s=C((n+1)*(m+1),3) s1=C(n+1,3)*(m+1) + C(m+1,3)*(n+1);
s2=边长大于二的矩形的个数乘以2;
#include<iostream>
#include<cstdlib>
#include<stdio.h>
using namespace std;
typedef long long ll;
int gcd(int a,int b)
{
return b==0? a : gcd(b,a%b);
}
long long com(int n,int r)
{
if(n<r)
return 0;
if(n-r<r)
r=n-r;//C(n,r)==C(n,n-r);
int i,j;
long long ret=1;
for(i=0,j=1;i<r;i++)
{
ret*=(n-i);
for(;j<=r&&ret%j==0;j++)
{
ret/=j;
}
}
return ret;
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
ll ans=0;
ans=com((n+1)*(m+1),3);
for(int i=2;i<=n;i++)
for(int j=2;j<=m;j++)
{
ans-=(ll)(gcd(i,j)-1)*(n-i+1)*(m-j+1)*2;
}
ans-=com(n+1,3)*(m+1);
ans-=com(m+1,3)*(n+1);
cout<<ans<<endl;
}
return 0;
}