素因子分解&&素因子分解求最大公约数&&素因子分解求最小公倍数

素因子分解 就是把一个数化成 n=p1^a1*p2^a2*.....*pn^an的形式 其中p1,p2...pn都为素数;

#include <iostream>//整数素因子分解
#include <cstdio>
#include <cmath>
using namespace std;

int main()
{
    int n;
    while(cin>>n){
        int x,count1=0;
        int tn=n;
        int count2=0;
        for(int i=2;i<=n;i++){
            if(tn%i==0){
                count1=0;
                ++count2;
                while(tn%i==0){
                    count1++;
                    tn/=i;
                }
                cout<<"素因子 "<<i<<" 幂指数"<<count1<<endl;
            }
        }
        cout<<"素因子个数 "<<count2<<endl;
    }
    return 0;
}

素因子分解法求最小公倍数&最大公约数;

a=(p1^a1)*(p2^a2)*(p3^a3)…(pm^am),b=(p1^b1)*(p2^b2)*(p3^b3)…(pm^bm)

其中最小公倍数=max(ai,bi);  最大公约数=min(ai,bi);

下面是求最大公约数的方法:

//素因子分解求最小公倍数
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;

typedef long long  ll;

int main()
{
    ll n,m;
    while(cin>>n>>m){
        int tn=n,tm=m;
        int count1,count2;
        ll lcm=1;
        ll mult1=1,mult2=1;
        for(int i=2;i<=max(n,m);i++){
            if(tn%i==0||tm%i==0){
                count1=count2;
                mult1=mult2=1;
                while(tn%i==0){
                    count1++;
                    tn/=i;
                    mult1*=i;
                }
                while(tm%i==0){
                    count2++;
                    tm/=i;
                    mult2*=i;
                }
                lcm=lcm*max(mult1,mult2);
            }
        }
        printf("%lld\n",lcm);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值