最长递增子序列(输出最长递增序列 及其长度)

最长递增子序列的解法有很多种,常用的有最长公共子序列法、动态规划、记录所有递增序列长度最大值的方法。

 

最长公共子序列法:如例子中的数组A{5,6, 7, 1, 2, 8},则我们排序该数组得到数组A‘{1, 2, 5, 6, 7, 8},然后找出数组A和A’的最长公共子序列即可。显然这里最长公共子序列为{5, 6, 7, 8},也就是原数组A最长递增子序列。

在http://blog.csdn.net/yysdsyl/article/details/4226630中有详细解释。

 

动态规划:参见http://qiemengdao.iteye.com/blog/1660229

 

这里主要介绍第三种方法:时间复杂度O(n lgn)

维护一个数组MaxV[i],记录所有长度为i的递增子序列中最大元素的最小值。
思路:遍历数组,如果数组中该元素a[k]大于MaxV[len-1]的值,直接len++,MaxV[len]=a[k];

   否则从MaxV中从后向前,找到第一个比a[k]大的值的索引j,并将MaxV[j]更新为a[k](即长度为j的递增序列最大值的最小值应为a[k]),查找过程可以使用二分搜索。

 

  为了记录最大递增序列,我们使用maxIndex记录其索引,注意需要初始化maxIndex[0]=0;在a[k]>MaxV[len-1] 和 a[k]<MaxV[len-1]&&pos==len-1时,都需要更新maxIndex的值。

所以博客http://blog.csdn.net/imzoer/article/details/8100064的解法是有问题的,这里已经更正。

 

 1 //修改后的二分搜索,返回从后向前,第一个比target大的索引 
 2 int bsearch(int *a, int s, int e,int target)
 3 {
 4     while(s<=e)
 5     {
 6         int mid = s +(e-s)/2;
 7         if(a[mid]<=target)
 8         {
 9             s=mid+1;
10         }
11         else 
12         {
13             e = mid-1;
14         }
15     }
16     return s;
17 }
18 int getMaxSub(int *a, int n)
19 {
20     int *maxIndex = new int[n];
21     int *maxV = new int[n];
22     int len =1;
23     maxV[0] = a[0];
24     maxIndex[0]=0;
25     for(int i=1; i <n; i++)
26     {
27         if(a[i]>maxV[len-1])
28         {
29             maxV[len]=a[i];
30             maxIndex[len]=i;
31             len++;
32         }
33         else
34         {
35             int pos = bsearch(a,0,len-1,a[i]);
36             maxV[pos]= a[i];
37             if(pos == len-1)
38                 maxIndex[pos]=i;
39         }
40     }
41     for(int i=0;i<len;i++)
42     {
43         printf("%d\t",a[maxIndex[i]]);
44     }
45     printf("\n");
46     return len;
47 } 
48 int main()
49 {
50     
51 
52     int a[]={
53         7,5,4,2,3,5,6,1,5,8,9,10
54     };
55     int b[]={
56         1, 5, 8, 3, 6, 7, 2, 9 
57     };
58     printf("The array is :\n");
59     for(int i=0;i<12;i++)
60     {
61         printf("%d\t",a[i]);
62     }
63     printf("\nThe max ascending array is:\n");
64     printf("The length of max ascending array is :%d\n",getMaxSub(a,12));
65     //getMaxSub(b,8);
66         
67 }

 

发布了61 篇原创文章 · 获赞 25 · 访问量 15万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览