问题定义:
给定一个长度为N的数组,找出一个最长的单调自增子序列(不一定连续,但是顺序不能乱)。例如:给定一个长度为6的数组A{5, 6, 7, 1, 2, 8},则其最长的单调递增子序列为{5,6,7,8},长度为4.
解法一:最长公共子序列法:
仔细思考上面的问题,其实可以把上面的问题转化为求最长公共子序列的问题。原数组为A{5, 6, 7, 1, 2, 8},下一步,我们对这个数组进行排序,排序后的数组为A‘{1, 2, 5, 6, 7, 8}。我们有了这样的两个数组后,如果想求数组A的最长递增子序列,其实就是求数组A与它的排序数组A‘的最长公共子序列。我来思考下原问题的几个要素:最长、递增、子序列(即顺序不变)。
递增:A‘数组为排序数组,本身就是递增的,保证了两序列的最长公共子序列的递增特性。
子序列:由于A数组就是原数组,其任意的子序列都是顺序不变的,这样就保证了两序列的最长公共子序列的顺序不变。
最长:显而易见。
具体的解法请参见上一篇博客:
解法二:动态规划法(O(N^2))
既然是动态规划法,那么最重要的自然就是寻找子问题,对于这个问题,我们找到他的子问题:
对于长度为N的数组A[N] = {a0, a1, a2, ..., an-1},假设假设我们想求以aj结尾的最大递增子序列长度,设为L[j],那么L[j] = max(L[i]) + 1, where i < j && a[i] < a[j], 也就是i的范围是0到j - 1。这样,想求aj结尾的最大递增子序列的长度,我们就需要遍历j之前的所有位置i(0到j-1),找出a[i] < a[j],计算这些i中,能产生最大L[i]的i,之后就可以求出L[j]。之后我对每一个A[N]中的元素都计算以他们各自结尾的最大递增子序列的长度,这些长度的最大值,就是我们要求的问题——数组A的最大递增子序列。
时间复杂度:由于每一次都要与之前的所有i做比较,这样时间复杂度为O(N^2)。
解法三:动态规划法(O(NlogN)

本文介绍了如何使用C语言解决最长递增子序列问题,包括动态规划的两种方法:O(N^2)和O(NlogN)。通过详细解释算法思路,演示了动态规划在优化时间复杂度上的应用。
最低0.47元/天 解锁文章
2594

被折叠的 条评论
为什么被折叠?



