算法
文章平均质量分 75
BigBzheng
机器学习、深度学习、数据挖掘、NLP
展开
-
用C++实现快速排序
快速排序的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。快速排序是一种不稳定的排序算法,也就是说,多个相同的值的相对位置也许会在算法结束时产生变动快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序。它采转载 2016-03-31 14:06:05 · 674 阅读 · 0 评论 -
深度学习的下一个热点——GANs将改变世界
本文作者 Nikolai Yakovenko 毕业于哥伦比亚大学,目前是 Google 的工程师,致力于构建人工智能系统,专注于语言处理、文本分类、解析与生成。生成式对抗网络—简称GANs—将成为深度学习的下一个热点,它将改变我们认知世界的方式。准确来讲,对抗式训练为指导人工智能完成复杂任务提供了一个全新的思路,某种意义上他们(人工智能)将学习如何成为一个专家。转载 2017-01-12 15:44:53 · 903 阅读 · 0 评论 -
深度学习(deep learning)--资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下:Free Online BooksDeep Learning66 by Yoshua Bengio, Ian Goodfellow and Aaron CourvilleNeural Networks and Deep Learning42 by Michael NielsenDeep Learning27 b转载 2017-01-15 10:57:36 · 1982 阅读 · 0 评论 -
C++面试
一、指针和引用的区别:1、初始化要求不同:引用在创建的时候必须进行初始化,也就是说必须引用到一个有效的对象;而指针在定义的时候可以不必初始化,也可以在后面的任何地方重新赋值(不是int const*p)2、可修改性不同:引用一旦被初始化指向某一个对象后,他就不能改变了,也就是说不能指向其他对象的引用;而指针在任何时候都可以指向另一个对象。3、不存在NULL引用:引用不能指向空的引用,它原创 2016-12-05 11:36:14 · 909 阅读 · 0 评论 -
面试机器学习、大数据岗位时遇到的各种问题
自己的专业方向是机器学习、数据挖掘,就业意向是互联网行业与本专业相关的工作岗位。各个企业对这类岗位的命名可能有所不同,比如数据挖掘/自然语言处理/机器学习算法工程师,或简称算法工程师,还有的称为搜索/推荐算法工程师,甚至有的并入后台工程师的范畴,视岗位具体要求而定。机器学习、大数据相关岗位的职责自己参与面试的提供算法岗位的公司有 BAT、小米、360、飞维美地、宜信、猿题库 等,根原创 2016-08-14 09:31:16 · 2560 阅读 · 0 评论 -
ML 工程师需了解的 10 大算法
毫无疑问,机器学习/人工智能的子领域在过去几年越来越流行。由于大数据是目前科技领域最热门的趋势,基于这些大规模的数据,机器学习在预测和计算建议方面变得不可思议的强大。最常见的机器学习的例子就是 Netflix(一家在线影片租赁提供商)的算法,它能基于你过去看过的电影来推荐电影,或着 Amazon 的算法,它能基于你过去买的书,来推荐书给你。那么如果你想进一步了解机器学习,你应该怎样开始原创 2016-08-14 09:28:40 · 830 阅读 · 0 评论 -
深度学习在人脸识别中的应用 ——优图祖母模型的“进化”
序言——“弱弱”的人工智能 说到人工智能(Artificial Intelligence, AI)人们总是很容易和全知、全能这样的词联系起来。大量关于AI的科幻电影更给人工智能蒙上一层神秘的色彩。强如《黑客帝国》、《机械公敌》中的AI要翻身做主人统治全人类。稍弱点的《机械姬》里EVA懂得利用美貌欺骗中二程序员,杀死主人逃出升天。最不济也可以蠢萌蠢萌的像WALL·E能陪玩、送礼物还能谈个恋爱。 其实翻译 2016-08-13 19:48:48 · 1597 阅读 · 0 评论 -
搞机器学习要哪些技能
1. 前言本来这篇标题我想的是算法工程师的技能,但是我觉得要是加上机器学习在标题上,估计点的人会多一点,所以标题成这样了,呵呵,而且被搜索引擎收录的时候多了一个时下的热门词,估计曝光也会更多点。不过放心,文章没有偏题,我们来说正经的。今天就说说机器学习这个最近两年计算机领域最火的话题,这不是一篇机器学习的技术文章,只是告诉大家机器学习里面的坑实在是太多,而且很多还没入门或者刚刚入门的朋友们转载 2016-08-22 22:10:38 · 993 阅读 · 5 评论 -
深度学习之-caffe预测、特征可视化python接口调用 (6)
原文地址:http://blog.csdn.net/hjimce/article/details/48972877作者:hjimce网上有很多caffe训练好的模型,有的时候我们仅仅想要方便的调用已经训练好的模型,利用python进行预测分类测试,查看可视化结果,这个时候,我们可以使用caffe为我们写好的python接口文件,我们在安装caffe的时候,有一步:make pycaffe转载 2016-05-08 20:09:20 · 815 阅读 · 0 评论 -
基于R-CNN的物体检测
基于R-CNN的物体检测原文地址:http://blog.csdn.net/hjimce/article/details/50187029作者:hjimce一、相关理论 本篇博文主要讲解2014年CVPR上的经典paper:《Rich feature hierarchies for Accurate Object Detection and Segmentation》,这篇转载 2016-05-07 17:06:26 · 872 阅读 · 0 评论 -
CNN应用之性别、年龄识别
原文地址:http://blog.csdn.net/hjimce/article/details/49255013作者:hjimce一、相关理论 本篇博文主要讲解2015年一篇paper《Age and Gender Classification using Convolutional Neural Networks》,个人感觉这篇文献没啥难度,只要懂得Alexnet,实现这篇文转载 2016-05-07 10:28:49 · 1869 阅读 · 0 评论 -
CVPR 2015 之深度学习总结
Part 1 - AlexNet 和 VGG-Net 今年的 CVPR 非常的火爆,总共有2800多人参与,相比去年增加了700多人,这与deep learning的异军突起是不无关系的。CVPR 2015 基本是 “the year of deep learning”,有大概70%的文章是关于deep learning的。大会请来了2位 keynote speakers: 计算原创 2016-05-12 22:46:37 · 1391 阅读 · 0 评论 -
支持向量机SVM(一)
1 简介支持向量机基本上是最好的有监督学习算法了。这份材料从前几节讲的logistic回归出发,引出了SVM,既揭示了模型间的联系,也让人觉得过渡更自然。2 重新审视logistic回归Logistic回归目的是从特征学习出一个0/1分类模型,而这个模型是将特性的线性组合作为自变量,由于自变量的取值范围是负无穷到正无穷。因此,使用logistic函数(或称作sigmoid函转载 2016-04-03 11:23:58 · 1027 阅读 · 0 评论 -
七步教你精通Python机器学习
开始。这是最容易令人丧失斗志的两个字。迈出第一步通常最艰难。当可以选择的方向太多时,就更让人两腿发软了。从哪里开始? 本文旨在通过七个步骤,使用全部免费的线上资料,帮助新人获取最基本的 Python 机器学习知识,直至成为博学的机器学习实践者。这篇概述的主要目的是带领读者接触众多免费的学习资源。这些资源有很多,但哪些是最好的?哪些相互补充?怎样的学习顺序才最好?我假定本原创 2016-03-19 21:23:12 · 872 阅读 · 0 评论 -
科学界十大伟大算法
Reddit有篇帖子介绍了算法对我们现在生活的重要性,以及哪些算法对现代文明所做贡献最大。这个表单并不完整,很多与我们密切相关的算法都没有提到,如机器学习和矩阵乘法,欢迎你继续补充。如果对算法有所了解,读这篇文章时你可能会问“作者知道算法为何物吗?”,或是“Facebook的‘信息流’(News Feed)算是一种算法吗?”,如果“信息流”是算法,那就可以把所有事物都归结为一种算法。才疏学原创 2016-03-19 15:27:21 · 1243 阅读 · 0 评论 -
论文笔记《ImageNet Classification with Deep Convolutional》
一、摘要 了解CNN必读的一篇论文,有些东西还是可以了解的。二、结构 1、 Relu的好处: 1、在训练时间上,比tanh和sigmod快,而且BP的时候求导也很容易 2、因为是非饱和函数,所以基本不会出现梯度消失的情况 Relu只要控制好learing rate,可以说是完胜之前的激活函数,也因此可...原创 2018-09-27 12:18:11 · 472 阅读 · 0 评论