假设按照升序排序的数组在预先未知的某个点上进行了旋转。
( 例如,数组 [0,1,2,4,5,6,7] 可能变为 [4,5,6,7,0,1,2] )。
搜索一个给定的目标值,如果数组中存在这个目标值,则返回它的索引,否则返回 -1 。
你可以假设数组中不存在重复的元素。
你的算法时间复杂度必须是 O(log n) 级别。
示例 1:
输入: nums = [4,5,6,7,0,1,2], target = 0
输出: 4
示例 2:
输入: nums = [4,5,6,7,0,1,2], target = 3
输出: -1
旋转数组可以分为两个升序的子数组,先找出他们的分解,也就是最小值的下标,然后对比最小值和target,判断在哪个子数组进行二分查找。
被边界条件搞晕,刚开始没有封装二分搜索函数,写得很乱,所以最好还是把复用的函数封装起来,思路也可以更清晰。
public static int search(int[] nums, int target) {
if (nums.length==0) return -1;
if (nums.length==1) return nums[0]==target ? 0:-1;
int len = nums.length;
int minIdx = searchMinIdx(nums, 0, len-1);
if (nums[minIdx] == target) return minIdx;
if (minIdx==0)
return binarysearch(nums, 0, len-1, target);
if (target<nums[0])
return binarysearch(nums, minIdx, len-1, target);
else
return binarysearch(nums, 0, minIdx-1, target);
}
private static int searchMinIdx(int[] nums, int l, int r){
int mid = l;
while (nums[l]>nums[r]){
if (r-l==1){
mid = r;
break;
}
mid = (l+r)/2;
//mid在左数组中,此时最小的元素应该在mid后面
if (nums[l]<=nums[mid]){
l = mid;
}
//mid在右数组中,此时最小的元素应该在mid前面
if (nums[r]>=nums[mid]){
r = mid;
}
}
return mid;
}
private static int binarysearch(int[] nums, int l, int r,int target){
int mid=l;
while (l<=r) {
mid = (l + r) / 2;
if (nums[mid]<target){
l = mid+1;
}else if (nums[mid]>target){
r = mid-1;
}else
return mid;
}
return -1;
}