leetcode 307. 区域和检索 - 数组可修改

给定一个整数数组  nums,求出数组从索引 i 到 j  (i ≤ j) 范围内元素的总和,包含 i,  j 两点。
update(i, val) 函数可以通过将下标为 i 的数值更新为 val,从而对数列进行修改。
示例:
Given nums = [1, 3, 5]
sumRange(0, 2) -> 9
update(1, 2)
sumRange(0, 2) -> 8

练习使用线段树

class NumArray {

    private  SegmentTree<Integer> segmentTree;
    public NumArray(int[] nums) {
        if(nums.length > 0){
            Integer[] data = new Integer[nums.length];
            for(int i = 0;i<nums.length;i++)
                data[i] = nums[i];
            segmentTree = new SegmentTree<>(data, ((a, b) -> a + b));
        }
    }

    public void update(int i, int val) {
        if(segmentTree == null)
            throw new IllegalArgumentException("Segment Tree is null");
        segmentTree.set(i, val);
    }

    public int sumRange(int i, int j) {
        if(segmentTree == null)
            throw new IllegalArgumentException("Segment Tree is null");
        return segmentTree.query(i,j);
    }

    public interface Merger<E> {
        E merge(E a, E b);
    }

    public class SegmentTree<E> {

        private E[] tree;
        private E[] data;
        private Merger<E> merger;

        public SegmentTree(E[] arr, Merger<E> merger){

            this.merger = merger;

            data = (E[])new Object[arr.length];
            for(int i = 0 ; i < arr.length ; i ++)
                data[i] = arr[i];

            tree = (E[])new Object[4 * arr.length];
            buildSegmentTree(0, 0, arr.length - 1);
        }

        // 在treeIndex的位置创建表示区间[l...r]的线段树
        private void buildSegmentTree(int treeIndex, int l, int r){

            if(l == r){
                tree[treeIndex] = data[l];
                return;
            }

            int leftTreeIndex = leftChild(treeIndex);
            int rightTreeIndex = rightChild(treeIndex);

            // int mid = (l + r) / 2;
            int mid = l + (r - l) / 2;
            buildSegmentTree(leftTreeIndex, l, mid);
            buildSegmentTree(rightTreeIndex, mid + 1, r);

            tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
        }

        public int getSize(){
            return data.length;
        }

        public E get(int index){
            if(index < 0 || index >= data.length)
                throw new IllegalArgumentException("Index is illegal.");
            return data[index];
        }

        // 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
        private int leftChild(int index){
            return 2*index + 1;
        }

        // 返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
        private int rightChild(int index){
            return 2*index + 2;
        }

        // 返回区间[queryL, queryR]的值
        public E query(int queryL, int queryR){

            if(queryL < 0 || queryL >= data.length ||
                    queryR < 0 || queryR >= data.length || queryL > queryR)
                throw new IllegalArgumentException("Index is illegal.");

            return query(0, 0, data.length - 1, queryL, queryR);
        }

        // 在以treeIndex为根的线段树中[l...r]的范围里,搜索区间[queryL...queryR]的值
        private E query(int treeIndex, int l, int r, int queryL, int queryR){

            if(l == queryL && r == queryR)
                return tree[treeIndex];

            int mid = l + (r - l) / 2;
            // treeIndex的节点分为[l...mid]和[mid+1...r]两部分

            int leftTreeIndex = leftChild(treeIndex);
            int rightTreeIndex = rightChild(treeIndex);
            if(queryL >= mid + 1)
                return query(rightTreeIndex, mid + 1, r, queryL, queryR);
            else if(queryR <= mid)
                return query(leftTreeIndex, l, mid, queryL, queryR);

            E leftResult = query(leftTreeIndex, l, mid, queryL, mid);
            E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);
            return merger.merge(leftResult, rightResult);
        }
        // 将index位置的值,更新为e
        public void set(int index, E e){

            if(index < 0 || index >= data.length)
                throw new IllegalArgumentException("Index is illegal");

            data[index] = e;
            set(0, 0, data.length - 1, index, e);
        }

        // 在以treeIndex为根的线段树中更新index的值为e
        private void set(int treeIndex, int l, int r, int index, E e){

            if(l == r){
                tree[treeIndex] = e;
                return;
            }

            int mid = l + (r - l) / 2;
            // treeIndex的节点分为[l...mid]和[mid+1...r]两部分

            int leftTreeIndex = leftChild(treeIndex);
            int rightTreeIndex = rightChild(treeIndex);
            if(index >= mid + 1)
                set(rightTreeIndex, mid + 1, r, index, e);
            else // index <= mid
                set(leftTreeIndex, l, mid, index, e);

            tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
        }

        @Override
        public String toString(){
            StringBuilder res = new StringBuilder();
            res.append('[');
            for(int i = 0 ; i < tree.length ; i ++){
                if(tree[i] != null)
                    res.append(tree[i]);
                else
                    res.append("null");

                if(i != tree.length - 1)
                    res.append(", ");
            }
            res.append(']');
            return res.toString();
        }
    }
}

/**
 * Your NumArray object will be instantiated and called as such:
 * NumArray obj = new NumArray(nums);
 * obj.update(i,val);
 * int param_2 = obj.sumRange(i,j);
 */
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值