搜索引擎
文章平均质量分 92
bigpretty
这个作者很懒,什么都没留下…
展开
-
如何做好一个垂直搜索引擎
本文先引用几句话:1.“确解用户之意,切返用户之需。”2.“门户网站都想着是怎样省钱,而不是怎样花钱来买技术。”3.“搜索引擎不是人人都能做的领域,进入的门槛比较高。”4.“只是优秀还不够,最好的方式是将一件事情做到极致。”(google十大真理)5.“做搜索引擎需要专注” “对于一项排到第四的业务,门户很难做到专注。”6.“用户无法描述道他要找什么,除非让他看到想找的东西。”7. “所谓楔形原创 2009-12-17 09:47:00 · 910 阅读 · 0 评论 -
搜索引擎学习资源收集
一、搜索引擎技术/动态资源、综合类1、卢亮的搜索引擎研究&http://www.wespoke.com/卢亮属于搜索引擎开发上的专家,以前开发过一个搜索引擎"博索"([URL=http://booso.com/][/URL]http://booso.com/),好像现在已经停止开发了,目前他服务于博客网。在他的这个blog上可以了解许多搜索引擎开发的技术和经验,值得持续关注。2、l转载 2010-01-07 09:04:00 · 1718 阅读 · 0 评论 -
隐马尔科夫模型HMM(2)
书接上文,前一话我们讲到了Forward Algorithm中初始状态的部分概率的计算方法。这次我们继续介绍。2c.如何计算t>1时刻的部分概率 回忆一下我们如何计算部分概率: t ( j )= Pr( observation | hidden state is j ) * Pr(all paths to state j at time t) 我们可知(通过递归)乘积中第一项是可用转载 2010-01-08 16:38:00 · 1133 阅读 · 0 评论 -
隐马尔科夫模型HMM(1)
我们通常都习惯寻找一个事物在一段时间里的变化规律。在很多领域我们都希望找到这个规律,比如计算机中的指令顺序,句子中的词顺序和语音中的词顺序等等。一个最适用的例子就是天气的预测。首先,本文会介绍声称概率模式的系统,用来预测天气的变化然后,我们会分析这样一个系统,我们希望预测的状态是隐藏在表象之后的,并不是我们观察到的现象。比如,我们会根据观察到的植物海藻的表象来预测天气的状态变化。最后,转载 2010-01-08 16:35:00 · 2438 阅读 · 0 评论 -
计算概率
<br />书接上文,前一话我们讲到了Forward Algorithm中初始状态的部分概率的计算方法。这次我们继续介绍。<br />2c.如何计算t>1时刻的部分概率<br />回忆一下我们如何计算部分概率:<br /> t ( j )= Pr( observation | hidden state is j ) * Pr(all paths to state j at time t) <br />我们可知(通过递归)乘积中第一项是可用的。那么如何得到Pr(all paths to state j at原创 2010-08-08 23:04:00 · 1296 阅读 · 0 评论