bzoj2818 欧拉函数、莫比乌斯反演

转载请注明出处,谢谢http://blog.csdn.net/bigtiao097?viewmode=contents

题意

给定整数 n,求1<=x,y<=n (1n107) 且gcd(x,y)为素数的数对(x,y)有多少对.

思路

  • 思路一:
    gcd(x,y)=pgcd(x/p,y/p)=1

          我们先假设是有序对,不妨设 x<y  枚举上式中的素数p,对于每一个p,枚举 y/p(1y/pn/p)  ,计算x/p有多少种可能,然后累和,这里的x/p的可能数即为比y/p小且与y/p互素的数的个数(欧拉函数),因为根据上式 x/py/p  是互素的
          但是上述做法会超时,我们需要提前处理好 φ(x) ,这样枚举素数p,对于每个p,我们可以O(1)的求出对答案的贡献
          最后一点需要注意的是(p,p)这样的也符合
  • 思路二:
    莫比乌斯最典型也是最简单的应用
    g(n)=n|df(d)f(n)=n|dμ(dn)g(d)

    f(n) 代表    gcd(x,y)=n   xy
    g(n)gcd(x,y)%n=0  xy
    这样就有了
    g(n)=n|df(d)

    然后利用反演公式,因为 g(n) 非常的好求, g(n)=max_xn×max_yn
    有了这些就好说了,对于每一个素数p,根据上述的反演公式直接计算就可以了

最后有一点要说的是,在bzoj上交题,跑素筛、欧拉函数、mobius函数之类的预处理时,不要总跑maxn这么大的,读入n后需要多大跑多大,否则可能会超时
还有就是printf时long long的占位符不要用%I64d,要用%lld,否则会WA


具体代码如下:
代码一
Result:Accepted     Memory: 122380Kb     Time : 2656 ms

#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
const int maxn=1e7+5;
int phi[maxn];
ll sum[maxn];
ll ans;
int n;
int prime[maxn/10] = {0},cnt = 0;
void euler_init(int n)
{
    for(int i=1;i<=n;i++) phi[i]=i;
    for(int i=2;i<=n;i++)
        if(phi[i]==i)
        {
            for(int j=i;j<=n;j+=i)
                phi[j]=phi[j]/i*(i-1);
            prime[cnt++] = i;
        }
}
int main()
{
    cin>>n;
    euler_init(n);
    for(int i=2;i<=n;i++)
        sum[i] = sum[i-1]+phi[i]*2;
    for(int i=0;i<cnt&&prime[i]<=n;i++)
        ans+= 1+sum[n/prime[i]];
    cout<<ans<<endl;

}

代码二
Result:Accepted     Memory: 89180 kb     Time : 3164 ms

#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
const int maxn=1e7+5;
bool vis[maxn];
int prime[maxn];
int mu[maxn];
int n;
int tot;
ll ans;
ll cur;
void mobius(int n)
{
    memset(vis,0,sizeof vis);
    mu[1] = 1;
    tot = 0;
    for(int i = 2; i <=n; i++)
    {
        if( !vis[i] ){
            prime[tot++] = i;
            mu[i] = -1;
        }
        for(int j = 0; j < tot; j++)
        {
            if(i * prime[j] > n) break;
            vis[i * prime[j]] = true;
            if( i % prime[j] == 0)
            {
                mu[i * prime[j]] = 0;
                break;
            }
            else
                mu[i * prime[j]] = -mu[i];
        }
    }
}
int main()
{
    cin>>n;
    mobius(n);
    for(int i=0;i<tot&&prime[i]<=n;i++)
    {
        cur = prime[i];
        for(int d=cur;d<=n;d+=cur)
            ans+= 1LL*mu[d/cur]*(n/d)*(n/d);
    }
    cout<<ans<<endl;

}

莫比乌斯反演的方法还可以进行分段优化
这里不详细解释了,代码如下:
Result:Accepted     Memory: 89180 kb     Time : 1104 ms

#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
const int maxn=1e7+5;
bool vis[maxn];
int prime[maxn];
int mu[maxn];
int n;
int tot;
ll ans;
ll cur;
void mobius(int n)
{
    memset(vis,0,sizeof vis);
    mu[1] = 1;
    tot = 0;
    for(int i = 2; i <=n; i++)
    {
        if( !vis[i] ){
            prime[tot++] = i;
            mu[i] = -1;
        }
        for(int j = 0; j < tot; j++)
        {
            if(i * prime[j] > n) break;
            vis[i * prime[j]] = true;
            if( i % prime[j] == 0)
            {
                mu[i * prime[j]] = 0;
                break;
            }
            else
                mu[i * prime[j]] = -mu[i];
        }
    }
    for(int i=2;i<=n;i++)
        mu[i]+=mu[i-1];
}
ll solve(int a,int b)
{
    ll res = 0;
    if(a>b)swap(a,b);
    for(int i=1,nex;i<=a;i=nex+1)
    {
        nex = min(a/(a/i),b/(b/i));
        res += 1LL *(mu[nex]-mu[i-1])*(a/i)*(b/i);
    }
    return res;
}
int main()
{
    cin>>n;
    mobius(n);
    for(int i=0;i<tot&&prime[i]<=n;i++)
    {
        cur = prime[i];
        ans+=solve(n/cur,n/cur);
    }
    cout<<ans<<endl;

}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值