【API 设计之道】05 列表分页模式:彻底告别 Offset 分页的性能陷阱

大家好,我是Tony Bai。

欢迎来到我们的专栏 《API 设计之道:从设计模式到 Gin 工程化实现》的第五讲。

上一讲中,我们通过“字段掩码”解决了单条数据过大的传输效率问题。今天,我们把视角拉远,看看当数据量成千上万时,API 该如何高效地传输列表数据。

在早期的 Web 开发中,每当我们需要实现一个“用户列表”或“订单列表”接口时,脑海中浮现的 SQL 往往是这样的:

SELECT * FROM users ORDER BY created_at DESC LIMIT 10 OFFSET 1000;

对应的 API 参数通常是 ?page=100&page_size=10

这种基于偏移量(Offset-based)的分页方式,在数据量较小时(比如几千条)运行良好,且非常直观:用户想看第几页就跳到第几页。

但在云原生和海量数据时代,这种设计就像一颗定时炸弹。当数据量达到百万、千万级别时,DBA 会拿着慢查询日志找上门来;当用户在瀑布流页面(如抖音、Twitter)下拉刷新时,他们会发现数据重复出现或莫名丢失。

为什么最经典的 Offset 分页如今成了反模式?Google、Facebook、Twitter 的 API 为什么不再支持 page 参数,而是强制使用 next_page_token

今天这一讲,我们就来彻底拆解分页的架构设计,并用 Go 实现一套高性能的游标分页(Cursor-based Pagination)机制。

痛点一:Offset 的性能塌陷

让我们复习一下 MySQL 的工作原理。当你执行 LIMIT 10 OFFSET 1000000 时,数据库并不是直接“跳”到第 100万 行。

数据库必须先扫描前 1,000,000 行数据,然后把它们扔掉,最后才返回接下来的 10 行。

这就好比你让一个人吃苹果,他想吃第 100 个。用 Offset 模式,他必须先把前 99 个苹果削皮、切块、拿起来,然后再扔进垃圾桶,最后才吃第 100 个。

随着 OFFSET 值的增加,查询时间是呈线性增长的。这就是著名的 Deep Pagination(深度分页) 性能问题。

痛点二:数据漂移 (Data Drift)

性能慢还能忍,但数据不一致则是严重的业务 Bug。

想象一个新闻 App 的场景:

  1. 用户打开 App,加载了第 1 页(最新的 10 条新闻)。

  2. 在用户阅读期间,后台编辑又发布了 5 条新新闻

  3. 用户看完当前页,上滑加载第 2 页 (OFFSET 10)。

此时会发生什么?

由于新插入了 5 条数据,原本第 1 页的后 5 条数据,现在被“挤”到了第 2 页的位置。

结果:用户在第 2 页看到了刚刚在第 1 页已经看过的 5 条新闻。

同理,如果有数据被删除,用户在翻页时就会漏掉数据。对于追求极致体验的移动端应用,这是不可接受的。

基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕基于序贯蒙特卡洛模拟法的配电网可靠性评估展开研究,重点介绍了利用Matlab代码实现该方法的技术路径。文中详细阐述了序贯蒙特卡洛模拟的基本原理及其在配电网可靠性分析中的应用,包括系统状态抽样、时序模拟、故障判断与修复过程等核心环节。通过构建典型配电网模型,结合元件故障率、修复时间等参数进行大量仿真,获取系统可靠性指标如停电频率、停电持续时间等,进而评估不同运行条件或规划方案下的配电网可靠性水平。研究还可能涉及对含分布式电源、储能等新型元件的复杂配电网的适应性分析,展示了该方法在现代电力系统评估中的实用性与扩展性。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事电网规划与运行的技术工程师。; 使用场景及目标:①用于教学与科研中理解蒙特卡洛模拟在电力系统可靠性评估中的具体实现;②为实际配电网的可靠性优化设计、设备配置与运维策略制定提供仿真工具支持;③支撑学术论文复现与算法改进研究; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法流程,重点关注状态转移逻辑与时间序列模拟的实现细节,并尝试在IEEE标准测试系统上进行验证与扩展实验,以深化对方法机理的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值