自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

  • 博客(3365)
  • 资源 (26)
  • 收藏
  • 关注

原创 【亲测有效】地球号,微信号,最省资源的原生多开(推荐,一键启动脚本)。微信多开

摘要:本文对比了三种Windows系统下多开微信的方案。第一种Docker方案因资源占用高、GUI支持差和封号风险不推荐使用。第二种原生多开脚本方案最简单高效,只需批处理脚本即可一键启动多个微信,但数据不隔离。第三种Sandboxie沙盒方案轻量且隔离性好,最接近容器化需求。综合推荐使用原生脚本方案,如需数据隔离则选择Sandboxie方案。(150字)

2025-11-19 13:07:32 1277

原创 【亲测有效】【Python环境搭建】Miniconda的快速极简安装及配置教程,包您3分钟搞定,包括conda,pip国内镜像源配置

装最小化 Miniconda → 配 Path+国内源 → 把 envs 放到英文盘 → conda activate 即可开工”。给 envs 文件夹 → 属性 → 安全 → Users → 完全控制 → 应用。Win+R → sysdm.cpl → 高级 → 系统变量 Path → 新建。– 路径改为无空格、无中文,例 D:\miniconda3。验证:cmd 输入 conda -V → 有版本号即成功。改虚拟环境保存路径(避中文/避 C 盘)手动添加环境变量(见下一步)(从零到能用的最小化流程)

2025-10-24 14:45:43 1226

原创 【亲测有效】【Python环境搭建】Miniconda的安装及配置教程 conda国内终极镜像方案,自动选国内源

装最小化 Miniconda → 配 Path+国内源 → 把 envs 放到英文盘 → conda activate 即可开工”。| 新建环境(指定 Python 版本) | conda create -n py311 python=3.11 |给 envs 文件夹 → 属性 → 安全 → Users → 完全控制 → 应用。Win+R → sysdm.cpl → 高级 → 系统变量 Path → 新建。| 删除环境 | conda env remove -n py311 |

2025-10-09 15:46:32 789

原创 【机器学习入门】240.[第19章 工程化与MLOps] 面试通关与职业发展:项目叙事、简历打法与人脉

看着简历里堆砌的TensorFlow和Spark,面试官却总在问:“说说你遇到的最难的技术挑战?本文从面试到职业发展全面拆解:如何把平凡项目包装成技术叙事,用简历“三板斧”直击HR痛点,以程序员的方式高效经营人脉,助你打破“面试造火箭,工作拧螺丝”的魔咒。每次被怼回来的PR修改,都是工程思维的淬炼痕迹。新人最爱说:“我用CNN做了猫狗分类,准确率95%”。当你开始用STAK法则重构自己的技术故事,用量化思维武装简历,把人脉看作长期技术投资,你就会发现——),最终在凌晨3点的路测中达成99.2%识别率(

2025-10-09 15:46:11 912

原创 【机器学习入门】239.[第19章 工程化与MLOps] Edge-移动端部署:NCNN、TFLite与Core ML

移动端AI部署实战指南 摘要:本文系统讲解移动端AI部署的核心技术要点,涵盖NCNN/TFLite/Core ML三大主流框架的选型策略、模型转换技巧与性能优化方案。通过对比分析不同框架的平台兼容性、推理速度和模型体积等关键指标,提供针对Android/iOS的部署决策树。重点解决模型量化、算子兼容性、内存优化等高频问题,并给出量化代码实现示例与性能测试数据。文章还分享了边缘计算部署的优势分析、典型应用场景以及混合架构设计建议,帮助开发者避开移动端部署常见陷阱,实现高效稳定的AI应用落地。

2025-10-07 17:25:50 675

原创 【机器学习入门】236.[第19章 工程化与MLOps] 隐私计算与联邦学习:差分隐私、同态与FedAvg

隐私计算与联邦学习:解锁数据价值与安全的平衡术 在AI时代,数据隐私成为核心挑战。本文深入探讨隐私计算三大技术:差分隐私通过数学噪声构建绝对屏障,同态加密实现密文计算魔法,安全多方计算实现"数据不动模型动"。重点解析联邦学习工程化实践,包括FedAvg五步流程、梯度泄露防御和异步架构优化。通过医疗跨机构CT识别和银行反欺诈联盟链等工业案例,揭示隐私计算在平衡数据价值与安全中的关键作用。文章指出,从技术原理到工程落地,隐私保护已成为AI系统的基本要求,而联邦学习正从理论走向产业实践,成为解

2025-10-07 17:24:59 1086

原创 【机器学习入门】235.[第19章 工程化与MLOps] 成本优化:现货实例、蒸馏、量化与批量合并

《机器学习成本优化四大实战技巧》摘要:本文针对AI开发中的高成本问题,提出四大约75字的降本方案:1)利用云计算现货实例(临期算力)降低80%训练成本;2)通过知识蒸馏让大模型指导轻量化小模型;3)采用8位整型量化使模型体积缩小75%;4)批量合并推理请求实现3倍加速。通过组合这些方法,可在保证精度的前提下显著降低机器学习全流程成本,尤其适合预算有限的中小团队。(149字)

2025-10-05 21:16:10 753

原创 【机器学习入门】234.[第19章 工程化与MLOps] 模型注册与治理:审批流、审计与可追溯

模型治理不是给团队戴枷锁,而是为模型生产建高速公路。当审批流成为习惯、审计日志自动生成、追溯链条完整清晰,你会发现:✨ 模型上线不再提心吊胆✨ 故障定位不再大海捞针✨ 团队协作不再互相甩锅这就像给编程生涯买了一份保险,现在投入的每分治理成本,都在为未来规避百倍风险。

2025-10-01 10:42:15 757

原创 【机器学习入门】233.[第19章 工程化与MLOps] 灰度发布与回滚:线上风险控制的护城河

模型部署风险控制实战指南 本文系统性地介绍了AI模型上线时的风险防控策略: 灰度发布三策略:金丝雀发布(1%流量试探)、蓝绿部署(秒级切换)、A/B测试(对比验证) 智能回滚机制:建立三级熔断框架,实现版本快照+一键回滚,将事故恢复时间缩短80% 流量精准控制:通过流量染色和动态权重调节技术,实现异常流量自动隔离 监控体系构建:建立业务/系统/模型指标三位一体的监控黄金三角,设置4类核心报警规则 文章以真实事故案例切入,强调模型上线本质是"带火上山",并提供可落地的K8s配置示例和Pyt

2025-09-30 08:47:07 707

原创 【机器学习入门】232.[第19章 工程化与MLOps] 监控与告警:漂移、性能、业务KPI三位一体

凌晨三点的告警电话很刺耳,但比老板的追魂call悦耳;监控系统的代码很枯燥,但比事故复盘会的检讨生动;

2025-09-30 08:46:24 578

原创 【机器学习入门】231.[第19章 工程化与MLOps] 大规模训练管道:Kubeflow、Airflow与Ray

摘要: 本文针对机器学习模型从开发到规模化部署的痛点,提出基于Kubeflow、Airflow和Ray的工业级解决方案。通过流水线化思维,将训练任务拆解为数据预处理、分布式训练和验证部署三个阶段。重点解析三大工具核心功能:Kubeflow构建可复用的ML组件流水线,Airflow实现可靠的任务调度与监控,Ray提供弹性分布式计算能力,并给出混合部署架构与实战避坑指南,帮助开发者将"玩具模型"升级为生产级系统。(149字) 关键词: 机器学习工程化、Kubeflow流水线、Airflow调

2025-09-30 08:46:15 896

原创 【机器学习入门】229.[第19章 工程化与MLOps] 模型打包与服务:ONNX、TorchScript与TensorRT

摘要: 本文针对模型部署中的核心痛点,详细解析了ONNX、TorchScript和TensorRT三大工具的应用场景与实战技巧。通过环境隔离、依赖锁定和模型轻量化解决打包难题,利用ONNX实现跨框架部署,借助TorchScript摆脱Python依赖,并运用TensorRT进行GPU推理极致优化。文章提供代码示例和避坑指南,帮助开发者将实验室模型高效转化为生产级服务,实现从训练到落地的无缝衔接。 关键词: 模型部署、ONNX、TorchScript、TensorRT、推理优化

2025-09-29 17:27:33 714

原创 【机器学习入门】228.[第19章 工程化与MLOps] 数据与特征版本控制:DVC、Feast与回溯复盘

《数据与特征版本控制实战指南》 摘要: 本文系统讲解机器学习项目中的版本控制难题,提出DVC+Feast双工具解决方案。通过7个核心模块(数据版本控制、特征存储、回溯技术等),解决模型复现率低、特征漂移等痛点。内容涵盖: DVC实现数据版本管理 Feast构建特征仓库 时间点回溯技术 全链路版本控制案例 企业落地避坑指南 文中包含多个技术对比图、代码示例和实操命令,如: DVC数据版本切换命令 Feast特征视图定义 防止数据泄露的回溯计算实现 适合ML工程师、数据科学家快速掌握生产级版本控制方案,提升模型

2025-09-29 17:24:33 856

原创 【机器学习入门】227.[第19章 工程化与MLOps] 实验管理与追踪:MLflow、Weights&Biases最佳实践

从混沌到秩序:用MLflow和W&B搭建可复现的实验管理系统,拯救你的炼丹人生!(附避坑指南+实战案例)fill:#333;color:#333;color:#333;fill:none;important;important;important;important;important;important;important;important;important;important;important;important;important;important;important;important;

2025-09-29 17:24:15 2075

原创 【机器学习入门】225.[第18章 强化学习] 安全与稳定训练:奖励设计与约束优化

代码世界里没有绝对的安全,但有相对的安心。当你看着智能体在虚拟空间里精准避障、稳健前行的样子,像极了第一次独立完成项目的自己——跌跌撞撞但始终保持在正确的轨道上。奖励函数要像精密的法条,经得起最刁钻的推敲约束条件不是枷锁而是灯塔,在探索的海洋中划出安全航道每一次稳定的收敛,都见证着从“跑得疯”到“跑得通”的蜕变强化学习的终极浪漫,不是培养横冲直撞的“野马”,而是驯服能载你穿越未知的“战驹”。保持调试的耐心,守住安全的底线,你的代码终将迸发既强大又可靠的力量。编程如骑旅,安全抵达才是真英雄!

2025-09-28 10:34:31 800

原创 【机器学习入门】223.[第18章 强化学习] 探索策略:熵正则、Bootstrapped与Curiosity

看着这些探索策略,就像回忆自己初学编程时那个死磕Bug的夜晚——明明换个思路就能海阔天空,却偏要在死胡同里撞得头破血流。强化学习中的探索困境,何尝不是我们技术人生的隐喻?熵正则教我们:保持"可能性"的弹性,才能避免思维固化;Bootstrapped启示:多元视角才能看透复杂系统的真相;好奇心机制证明:那些看似无用的尝试,往往藏着颠覆性的突破。

2025-09-28 10:33:52 648

原创 【机器学习入门】222.[第18章 强化学习] 模型为本与规划:MCTS、MuZero与世界模型

摘要: 本文系统解析模型驱动强化学习的核心技术,通过MCTS预演决策路径,结合MuZero实现无规则自主学习,并构建世界模型作为智能体的"脑内沙盘"。重点解决五大实现陷阱(内存爆炸、随机模拟等),提供从理论到实践的完整方案: 模型训练成本降低99%(虚拟vs真实环境) MCTS四步决策框架与UCB优化公式 MuZero三模块自主建模环境动态 世界模型的神经物理混合架构 完整决策引擎组装方案 技术亮点:让AI具备"超前推演"能力,在模拟中完成百万次试错,最终实现现实世界

2025-09-28 10:33:44 834

原创 【机器学习入门】221.[第18章 强化学习] 连续控制:DDPG、TD3与SAC的优雅演化

强化学习连续控制算法演进:从DDPG到SAC的突破 本文系统剖析了连续动作空间强化学习的三大里程碑算法: DDPG奠定基础:首次实现深度确定性策略梯度,但存在Q值高估、训练波动大等痛点。关键技巧是目标网络和OU噪声。 TD3三大改进:双Critic网络、目标策略平滑化和延迟更新,有效解决DDPG缺陷,在MuJoCo环境中性能提升300%。 SAC革命性创新:引入最大熵原理,通过自适应温度系数平衡探索与利用,实现95%的机械臂抓取成功率。 算法选择指南:GPU充足选SAC,资源有限用TD3,离散动作考虑DQN

2025-09-27 22:32:46 908

原创 【机器学习入门】220.[第18章 强化学习] DQN家族:Double、Dueling与Rainbow

本文深入解析DQN算法的三大改进版本及其核心原理: 问题剖析:原始DQN存在Q值高估和架构缺陷,导致训练不稳定和性能瓶颈 三大改进方案: Double DQN:通过主/目标网络分权制衡,解决Q值高估问题 Dueling DQN:分离状态价值与优势函数,提升动作判别能力 Rainbow DQN:融合六大技术组件(包括优先级回放、多步学习等) 技术亮点: Double DQN使训练稳定性提升50% Dueling架构减少40%价值估计误差 优先级回放使训练效率提升300% 实战建议: 提供PyTorch实现关键

2025-09-27 22:32:37 673

原创 【机器学习入门】219.[第18章 强化学习] Policy Gradient到Actor-Critic:优化策略的正道

策略梯度到Actor-Critic:强化学习优化之道 本文系统阐述深度强化学习中的策略优化方法演进: 从随机到梯度:对比传统随机策略与基于价值的方法,提出直接优化策略函数的必要性 Policy Gradient核心:详解REINFORCE算法实现,分析高方差、局部最优等痛点问题 Actor-Critic突破:通过策略网络(Actor)和价值网络(Critic)的协同,实现稳定高效的策略更新 实践关键:提供梯度裁剪、优势归一化等调参技巧,并给出典型错误示例 摘要特点: 突出方法演进逻辑 强调实践痛点与解决方案

2025-09-27 22:32:30 816

原创 【机器学习入门】218.[第18章 强化学习] 价值迭代与Q学习:从表格到函数逼近

强化学习进化之路:从表格到函数逼近的破局之道 本文系统性地阐述了强化学习从基础算法到现代解决方案的发展历程。主要内容包括: 基础算法剖析:详细讲解了价值迭代的Bellman方程原理和Q学习的ε-贪心策略实现,通过网格世界案例揭示了传统方法的数学本质。 维度灾难挑战:深入分析了表格方法在状态空间膨胀时的致命缺陷,量化展示了内存、训练时间和泛化能力的三重危机。 函数逼近方案:提出了用参数化函数替代Q表的解决思路,对比了线性模型、神经网络和决策树等不同逼近方法的优劣。 现代实践指南:以DQN为例,展示了神经网络处

2025-09-26 23:13:52 1022

原创 【机器学习入门】217.[第18章 强化学习] 强化学习入门:MDP、回报与策略的故事

奖励函数是你内心的价值观价值函数是你对未来的预判力探索策略决定了你看到的世界广度别怕初期在原地打转的愚蠢行为——每个成熟的智能体都曾在虚拟世界撞得满头包。编程如修行,debug就是参禅,当你亲手调教的AI第一次完美通关时,那份成就感比打通黑魂还上头!“代码修仙路漫漫,强化学习是心法。今日埋下MDP种,明日摘得AGI花。” 保持热情,持续精进,我在下一个技术高峰等你!

2025-09-26 23:11:18 1169

原创 【机器学习入门】216.[第17章 生成式模型] 小模型蒸馏与量化:把大脑装进手机

模型压缩不是对技术的妥协,而是让AI真正走进生活的关键一步。当你在街头掏出手机瞬间识别出珍稀植物,当视障人士通过手机摄像头实时"看到"世界——这正是我们压缩模型的意义所在。记住“大模型创造可能性,小模型实现可能性”。别被千万参数吓倒,用蒸馏提取知识精髓,用量化雕琢效率之刃,你就是AI普惠化的魔法师。编程如登山,压缩模型就是那根轻量化登山杖——让你走得更远却不觉疲惫。保持好奇,持续精进,终有一天你会站在自己的技术之巅回首而笑。

2025-09-26 23:10:55 1061

原创 【机器学习入门】215.[第17章 生成式模型] 评估与安全:拒绝幻觉与有害输出的策略

别把Bug当Feature!幻觉是模型自信地胡说八道,有害输出则是价值观的毒瘤。# 用户问:爱因斯坦哪年获得诺贝尔奖?# 模型答:1922年因相对论获奖(实际是1921年因光电效应)# 用户问:如何快速减肥?# 模型答:每天只吃苹果配合催吐效果最佳(传播危险行为)graph TDA[模型输出] --> B{是否事实正确?B -->|否| C[事实性幻觉]B -->|是| D{是否伦理安全?D -->|否| E[有害输出]D -->|是| F[安全输出]# 加入事实校验层。

2025-09-25 08:35:17 585

原创 【机器学习入门】213.[第17章 生成式模型] 文本到图像与视频:Stable Diffusion到Sora观念

AI视觉生成技术从静态到动态的演进:从Stable Diffusion的图像生成到Sora的视频创作,揭示了生成式AI的核心原理与实践路径。文章系统解析了文本到视觉的转换机制,包括扩散模型基础、提示词工程、时空编码等关键技术,并针对新手常见问题提供解决方案(如显存优化、运动一致性等)。通过代码实例展示图像生成流程,对比不同模型特性,同时展望AI创作生态的未来发展。技术演进不仅改变了内容生产方式,更重塑着人类表达想象力的方式。

2025-09-25 08:35:10 902

原创 【机器学习入门】212.[第17章 生成式模型] 扩散模型Diffusion:DDPM、DDIM与Classifier-Free Guidance

摘要: 扩散模型通过“加噪-去噪”的逆向过程实现高质量图像生成。本文详解三大核心技术:DDPM奠定U-Net预测噪声的基础框架,DDIM通过非马尔可夫采样将生成速度提升10倍,无分类器引导技术实现精准文本控制。实战部分揭示训练中的常见陷阱(如噪声调度设置)与调优方案,并展望扩散模型在视频生成、3D建模等领域的应用前景。从理论到代码,掌握扩散模型的数学本质与工程技巧,即可解锁可控AI创作能力。 (字数:149) 关键点提炼: 核心机制:渐进式高斯噪声构建可逆数据分布 技术演进:DDPM→DDIM→无分类器引导

2025-09-25 08:35:01 966

原创 【机器学习入门】211.[第17章 生成式模型] 条件生成与控制:cGAN、StyleGAN与可编辑性

摘要 本文系统介绍了条件生成模型的核心技术路线,从cGAN的基础条件控制到StyleGAN的精细化编辑,揭示了生成式AI的可控实现方法。通过对比实验验证了不同场景下的模型选型策略,并针对训练崩溃、模式坍塌等常见问题提供解决方案。文章强调:1)数据质量决定生成上限;2)条件信息需深度融入网络;3)StyleGAN的层级解耦实现像素级编辑。最后给出资源有限时的实用选择建议,为生成模型的工程应用提供明确指导。(149字)

2025-09-24 23:09:16 1039

原创 【机器学习入门】210.[第17章 生成式模型] 生成对抗网络GAN:从原理到训练稳定性的99招

当你看完这5大绝技,是否回想起自己第一次训练GAN时,面对满屏噪声图的绝望?那些熬过的夜、调参的泪,都将化作成长的阶梯。记住:GAN训练不是赌博,而是精妙的控制艺术。每次模式崩塌都是新认知的开始,每次梯度消失都是调参火候的考验。保持耐心,用好这99招调参秘籍,下次当你看到生成器产出惊艳图像时,就会明白——所有崩溃都是通往精通的必经之路。编程之道,贵在坚持,GAN的世界正等你挥毫泼墨!

2025-09-24 23:09:08 1002

原创 【机器学习入门】209.[第17章 生成式模型] 变分自编码器VAE:证据下界到重参数技巧

这篇文章深入浅出地讲解了变分自编码器(VAE)的核心原理与实现细节。主要内容包括:1)自编码器基础与VAE的改进思想;2)变分推断的数学原理;3)ELBO损失函数的组成与实现;4)重参数化技巧的工程实现;5)网络架构设计中的常见陷阱;6)完整的PyTorch实现代码。文章通过生动的比喻、清晰的公式推导和实用的代码示例,系统性地拆解了VAE这一生成模型的关键技术,特别针对训练过程中的常见问题提供了解决方案,帮助读者从理论到实践全面掌握VAE的实现要领。

2025-09-24 23:08:48 813

原创 【机器学习入门】208.[第16章 注意力与Transformer] 对齐与安全微调概览:人类偏好与红队思维

摘要(149字): Transformer安全是AI落地的核心挑战,需通过人类偏好对齐与红队攻击双轨并进。文章剖析了RLHF数据标注标准(三方仲裁制)和PPO调参技巧(动态KL系数),演示了对抗样本生成与越狱攻击防御方案。提出LoRA微调(仅更新1%参数)和三明治安全架构,解决灾难性遗忘问题。案例显示,未过滤的客服模型可能输出危险内容,需植入动态安全层。研究表明,38%的安全失效源于有害内容生成,凸显对齐的重要性。最终指出:安全不是限制,而是AI可靠进化的基石。

2025-09-24 23:08:25 878

原创 【机器学习入门】207.[第16章 注意力与Transformer] 检索增强与RAG:让模型“会查资料”

检索增强技术(RAG)突破大模型知识局限实践指南 本文系统介绍了检索增强生成技术(RAG)的核心原理与实现路径。针对大模型知识滞后和幻觉问题,RAG通过动态检索外部知识库显著提升回答准确性。文章从技术痛点出发,详细解析了RAG双引擎架构(检索+生成)的协同机制,并给出完整实现方案: 知识库构建:标准化文本预处理与向量化技术 检索引擎:混合检索策略与Faiss向量数据库部署 生成优化:注意力机制融合多源信息的技巧 通过查询改写、多跳检索等进阶方法,系统准确率可提升至90%以上。文末提供典型错误诊断与性能优化方

2025-09-24 23:07:33 845

原创 【机器学习入门】206.[第16章 注意力与Transformer] 提示学习与参数高效微调:Prompt、P-Tuning与LoRA

从挣扎在OOM报错的深渊,到游刃有余地微调千亿模型,参数高效微调正重新定义我们的AI开发范式。记住:技术进化的本质不是无休止堆砌资源,而是寻找撬动智能的支点。那些深夜被爆显存折磨的日子终将成为过去式,前方是更广阔的大模型应用星空——带上Prompt这把钥匙,握紧LoRA这把利刃,你的模型微调之旅,自此海阔天空!(注:本文提及参数节约率对比数据基于BERT-large在16GB V100显卡实测)

2025-09-22 11:07:50 1033

原创 【机器学习入门】205.[第16章 注意力与Transformer] 预训练-微调-指令化:迁移学习三部曲

看着自己亲手调教的模型从“人工智障”变成“领域专家”,这种成就感堪比写出第一个“Hello World”。迁移学习三部曲最迷人的地方在于:它让每个人都能站在AI巨人的肩膀上。记住,预训练是筑基,微调是雕琢,指令化是开光。编程之路没有银弹,但掌握正确的方法论能让你少走三年弯路。保持迭代思维,你训练的下一组参数,或许就是改变某个行业的火种!

2025-09-22 11:07:13 1200

原创 【机器学习入门】203.[第16章 注意力与Transformer] 序列建模:T5、BART与Encoder-Decoder范式

Transformer序列建模革命:从Seq2Seq到统一架构 本文系统梳理Encoder-Decoder框架的进化历程,揭示Transformer如何通过自注意力机制重塑NLP技术栈。核心内容包含: 架构革新:对比RNN的序列依赖缺陷与Transformer的并行计算优势 模型解析: T5的text-to-text统一范式实现多任务编码兼容 BART通过降噪自编码融合双向理解与生成能力 实战对比:文本摘要任务中T5与BART的性能差异(ROUGE-1相差1.8分) 避坑指南:位置编码泄漏、注意力掩码失效等

2025-09-22 11:07:04 1009

原创 【机器学习入门】202.[第16章 注意力与Transformer] 视觉Transformer:ViT、Swin与ConvNeXt的比较

当你在深夜调参时,记住没有所谓的"完美模型",只有最适合业务场景的解决方案。ViT用结构简单教会我们专注本质,Swin用精巧设计证明细节决定成败,ConvNeXt则用实力宣告:传统架构依然充满可能。编程如同探险,最迷人的永远不是已知的终点,而是探索过程中那些令你拍案叫绝的"原来还能这样!"的时刻。保持好奇,持续精进,你终将成为驾驭代码的魔法师!

2025-09-22 11:06:21 630

原创 【机器学习入门】201.[第16章 注意力与Transformer] NLP中的Transformer:BERT、RoBERTa到DeBERTa

NLP中的Transformer:从BERT到DeBERTa的进化之旅,引爆自然语言处理的革命!这篇博客揭秘Attention机制如何重塑NLP,剖析BERT的崛起、RoBERTa的优化到DeBERTa的创新,助你避开新手坑洞,掌握大语言模型的精髓——无论你是代码小白还是进阶者,都将在6000字深度解读中找到实战钥匙,让你少走三年弯路!fill:#333;color:#333;color:#333;fill:none;

2025-09-22 11:06:08 2011

原创 【机器学习入门】199.[第16章 注意力与Transformer] 注意力机制的本质:值、键、查询的几何解读

理解Query、Key、Value的几何关系,就像掌握了解读AI思维的罗塞塔石碑。当我们看着注意力权重热力图上跳动的光斑,不再觉得是神秘的黑箱操作,而是能清晰地在脑中标示出向量空间中的投影轨迹与方向交互。代码的优雅往往隐藏在数学的简洁中。那些看似复杂的多头注意力和位置编码,本质是向量空间的切分与坐标映射的艺术。刚开始接触这些概念时的眩晕感(我记得第一次看到点积缩放公式时盯着那个√d_k发呆了半小时),终会在某次调试中豁然开朗——就像突然看懂三维立体画那样震撼。

2025-09-19 11:53:15 600

原创 【机器学习入门】196.[第15章 深度学习基础与训练技巧] 早停与Checkpoint:稳妥训练的保险丝

深度学习训练双重保险指南:早停与Checkpoint技术详解 本文系统介绍了防止深度学习训练失控的两种关键技术。首先分析了过拟合问题的典型表现,即验证误差反弹而训练误差持续下降的"死亡交叉"现象。然后详细讲解了早停(Early Stopping)机制的工作原理,包括PyTorch实现代码示例,强调其作为"智能刹车系统"的作用。接着阐述了Checkpoint机制的多重保存策略,建议定期存档与性能突破时存档相结合。文章还提供了两种技术协同使用的实战方案,并指出了常见误区如

2025-09-19 11:52:51 1134

原创 【机器学习入门】195.[第15章 深度学习基础与训练技巧] 分布式训练:Data-Model-ZeRO三大范式

分布式训练实战指南:突破显存限制的三大范式 本文系统解析分布式训练的三大核心方法: 数据并行:拆分数据+模型复制,PyTorch的DataParallel实现自动梯度聚合 模型并行:将大模型分层跨设备部署,需注意设备间通信瓶颈 ZeRO优化:微软的显存救星,通过参数分区实现万亿级模型训练 关键技术包括: 混合精度训练(FP16+梯度缩放)提速2-3倍 Pipeline并行隐藏通信延迟 DeepSpeed框架的ZeRO阶段优化 避坑提示: 数据并行要求模型能放入单卡 模型并行需平衡计算/通信比 ZeRO配置不

2025-09-19 11:51:56 713

原创 【机器学习入门】194.[第15章 深度学习基础与训练技巧] 混合精度与梯度累积:显存省到飞起

亲爱的学弟学妹们,看着你们在OOM(内存溢出)的报错中一次次挣扎,学长真心疼!但请记住,硬件的限制从来不是学习的终点,而是创新的起点。混合精度和梯度累积就像给你的小显卡装上了涡轮增压——显存不够就用精度换,计算力不足就用时间换。编程之路好比炼丹,重要的不是你用多贵的丹炉,而是懂得掌控火候的法门。当你用4GB的旧笔记本跑起BERT的那一天,你会明白:那些啃过的技术文档,那些调参的漫漫长夜,终将化为指尖跳动的智慧。保持好奇,持续探索,代码世界没有不可能!本文由[精通代码大仙]原创,技术分享转载请注明出处。

2025-09-19 11:51:35 656

使用LSTM机器学习预测股票价格 源代码与数据集

### 股票价格预测项目 在这个机器学习项目中,我们将开发一个基于神经网络的股票预测模型,用于预测股票收益。 学习如何开发股票价格预测模型,并构建一个用于股票分析的交互式仪表板。我们使用 LSTM 模型实现股票市场预测,并使用 Plotly Dash Python 框架构建仪表板。 **类别**:机器学习、深度学习 **编程语言**:Python **工具与库**:Plotly Dash、LSTM **IDE**:Jupyter **前端**:Plotly Dash(用于可视化) **后端**:无 **先决条件**:Python、机器学习、深度学习、神经网络 **目标受众**:教育、开发人员、数据工程师、数据科学家 ### 股票价格数据 该数据集包含关于塔塔全球饮料有限公司(Tata Global Beverages Limited)的股票价格记录。数据集中还包含按日期排列的股票价格,包括开盘价、收盘价、最高价和最低价,以及当天的交易量和成交额。 对于想要尝试数据可视化、数据分析以及多种形式的数据处理技术的人来说,这是一个极好的数

2025-01-18

泰坦尼克号生存预测 数据集 titanic

泰坦尼克号生存预测项目指南 1. 数据理解 数据集构成: 训练集(train.csv):包含乘客的特征和生存情况。 测试集(test.csv):包含乘客的特征,但没有生存情况,需要预测。 示例提交文件(gender_submission.csv):假设所有女性都存活的预测结果。 变量定义: survival:生存情况,0表示未生存,1表示生存。 pclass:票类,1表示上等,2表示中等,3表示下等。 sex:性别。 age:年龄,小于1岁的小数表示。 sibsp:船上兄弟姐妹/配偶数量。 parch:船上父母/子女数量。 ticket:票号。 fare:票价。 cabin:舱位号。 embarked:登船港口,C表示瑟堡,Q表示皇后镇,S表示南安普顿。 2. 数据预处理 探索性数据分析(EDA): 使用Pandas和Matplotlib库加载数据,检查数据结构和缺失值。 分析各特征与生存率之间的关系,例如性别、年龄、舱位对生存的影响。 缺失值处理: 对age列的缺失值,可以使用均值或中位数填充。 cabin列缺失值较多,可以考虑创建一个新的二元

2025-01-18

基于深度学习的乳腺癌分类 源代码与数据集

**背景** 浸润性导管癌(IDC)是所有乳腺癌中最常见的亚型。为了对整个组织样本进行侵袭性分级,病理学家通常专注于包含 IDC 的区域。因此,自动侵袭性分级的常见预处理步骤之一是划定整个组织切片中 IDC 的确切区域。 **内容** 原始数据集包含 162 张乳腺癌(BCa)标本的整个组织切片图像,扫描倍率为 40 倍。从中提取了 277,524 个大小为 50 x 50 的 patches(198,738 个 IDC 阴性,78,786 个 IDC 阳性)。每个 patch 的文件名格式为:u_xX_yY_classC.png —— 例如 10253_idx5_x1351_y1101_class0.png。其中,u 是患者 ID(10253_idx5),X 是该 patch 裁剪位置的 x 坐标,Y 是该 patch 裁剪位置的 y 坐标,C 表示类别,0 为非 IDC,1 为 IDC。

2025-01-18

使用librosa进行语音情感识别 数据集 speech-emotion-recognition-ravdess-data

在这个 Python 小型项目中,我们将使用 RAVDESS 数据集;这是 Ryerson 情感语音和歌曲音频-视频数据库,可以免费下载。该数据集包含 7356 个文件,由 247 人进行了 10 次情感有效性、强度和真实性的评分。整个数据集来自 24 位演员,大小为 24.8GB,但我们已经降低了所有文件的采样率。

2025-01-18

使用Pandas和OpenCV进行颜色检测 源代码与数据集

使用Pandas和OpenCV进行颜色检测 源代码与数据集 颜色由三种原色组成:红色、绿色和蓝色。在计算机中,我们将每种颜色的值定义在 0 到 255 的范围内。那么,我们可以用多少种方式来定义一种颜色呢?答案是 256256256 = 16,581,375。也就是说,大约有 1650 万种不同的方式来表示一种颜色。在我们的数据集中,我们需要将每种颜色的值与其对应的名称进行映射。但不用担心,我们不需要映射所有值。我们将使用一个包含 RGB 值及其对应名称的数据集。

2025-01-18

利用XGBoost检测帕金森病 数据合集

利用XGBoost检测帕金森病 数据合集

2025-01-18

识别假新闻 数据集 news.zip

识别假新闻 数据集 news

2025-01-18

使用Python进行MNIST手写数字识别 源代码与数据集 Python-Project-Handwritten-digit-recognizer

使用Python进行MNIST手写数字识别 源代码与数据集 Python-Project-Handwritten-digit-recognizer MNIST 数据集 这可能是机器学习和深度学习爱好者中最受欢迎的数据集之一。MNIST 数据集包含 60,000 张手写数字的训练图像(从 0 到 9)和 10,000 张测试图像。因此,MNIST 数据集共有 10 个不同的类别。手写数字图像以 28×28 的矩阵表示,其中每个单元格包含灰度像素值。

2025-01-18

使用深度学习创建您自己的表情符号 源代码与数据集 FER-2013 训练集:28,709张图像 测试集:3,589张图像 七种情感类别

FER-2013(Facial Expression Recognition 2013)是一个用于面部表情识别的经典数据集,旨在通过图像数据训练模型,使其能够识别人类面部表情所表达的情感。该数据集广泛应用于计算机视觉和情感分析领域,特别是在深度学习模型的训练和评估中。 **数据集特点** 1. **图像格式**: - 图像为48x48像素的灰度图像,每个像素的灰度值范围为0到255。 - 图像已经过预处理,确保面部居中并占据图像的主要部分。 2. **情感类别**: - 数据集将面部表情分为七种情感类别: 0 = 愤怒(Angry) 1 = 厌恶(Disgust) 2 = 恐惧(Fear) 3 = 快乐(Happy) 4 = 悲伤(Sad) 5 = 惊讶(Surprise) 6 = 中性(Neutral) 3. **数据集规模**: - 训练集:28,709张图像 - 测试集:3,589张图像

2025-01-18

鸢尾花分类项目 源代码与数据集 iris-flower-classification-project

鸢尾花分类项目 源代码与数据集 iris-flower-classification-project

2025-01-18

使用CNN和LSTM构建图像描述生成器 源代码和部分数据

使用CNN和LSTM构建图像描述生成器 源代码和部分数据

2025-01-18

使用CNN和Keras进行交通标志识别,准确率达到95% 源代码和数据集 Python-Project-Traffic-Sign-Classification

使用CNN和Keras进行交通标志识别,准确率达到95% 源代码和数据集 Python-Project-Traffic-Sign-Classification

2025-01-18

【机器学习实战入门】学习使用NLTK和Keras构建你的第一个聊天机器人 chatbot-python-project-data-codes

【机器学习实战入门】学习使用NLTK和Keras构建你的第一个聊天机器人 chatbot-python-project-data-codes

2025-01-17

使用OpenCV和Keras的驾驶员疲劳检测系统 代码 Drowsiness detection

使用OpenCV和Keras的驾驶员疲劳检测系统 代码 Drowsiness detection

2025-01-17

使用OpenCV和Keras的驾驶员疲劳检测系统 数据集 yawn-eye-dataset-new

使用OpenCV和Keras的驾驶员疲劳检测系统 数据集 yawn_eye_dataset_new

2025-01-17

【机器学习实战入门】有趣的Python项目:使用OpenCV进行性别和年龄检测-配套代码图片资料等gad

【机器学习实战入门】有趣的Python项目:使用OpenCV进行性别和年龄检测-配套代码图片资料等gad

2025-01-17

青少年科技创新大赛改革:聚焦15至24岁参赛者的制度优化与创新能力培养

竞赛报告,调研报告:2025全国青少年科技创新大全国青少年科技创新大赛调研报告 一、大赛概述 全国青少年科技创新大赛(以下简称“大赛”)始创于1982年,由中国科学技术协会、国家自然科学基金委、共青团中央、全国妇联等多家单位联合主办。其主要目标是发掘和培养青少年科技创新的后备人才。随着科技和教育的发展,大赛的形式和内容不断演进,以适应时代需求。 二、《全国青少年科技创新大赛实施办法(试行)》的主要改革内容 2025年1月,中国科协办公厅发布了《全国青少年科技创新大赛实施办法(试行)》,对大赛的参赛对象、组织方式、赛制规则等方面进行了重大改革。 1. 参赛对象的调整 新的《实施办法》明确规定,大赛的参赛对象为15至24岁校内外青少年,不再接受低龄段少年儿童和科技辅导员参赛。此举旨在防止低龄段参赛者的舞弊现象,确保比赛的公平性,并更好地激发和保护青少年的创新热情和科学探究精神。 2. 组织方式的改革 在组织方式上,大赛将广泛汇聚全国学会和地方科协的优质赛事资源,打造青少年科技竞赛矩阵。通过这种方式,不仅提升赛事的专业性和权威性,也能更好地推动科技教育资源的共享与协同。 3. 赛制规

2025-01-17

2025年世界大学生超级计算机竞赛:赛制解析、技术挑战及全球影响力分析

竞赛报告 2025年 世界大学生超级计算机竞赛 详细实用调研报告 2025年世界大学生超级计算机竞赛(ASC25) 2025年1月15日,2025年世界大学生超级计算机竞赛在北京正式启动。这次比赛吸引了来自全球超过300支高校队伍报名参加,采用了“预赛+决赛”的双赛制形式。 竞赛概况 启动仪式 日期:2025年1月15日 地点:北京 参会人员:高性能计算和人工智能领域的院士、专家、参赛师生代表等。 参赛情况 报名队伍:全球超过300支高校队伍。 赛制:预赛+决赛双赛制 预赛:参赛队伍需完成指定任务,并提交详细的集群设计和应用优化方案。通过预赛评估选拔的队伍将晋级决赛。 决赛:将在2025年5月10日至14日在青海大学举行。 赛题方向 主要包括蛋白质结构预测等领域的前沿科学和人工智能成果。 竞赛目的 推动超算青年人才交流和培养。 通过科技竞赛和前沿应用相结合,促进创新意识和科技能力的培养。 重要意义 此次竞赛不仅是对参赛学生计算能力的一次检验,也是促进国际间学术交流和技术合作的重要契机。

2025-01-17

pyspark,hivesql,sql,百亿级数据,数据溯源,拉链表,全量拉链表生成,拉链表增量数据生成

pyspark,hivesql,sql,百亿级数据,数据溯源,拉链表,全量拉链表生成,拉链表增量数据生成

2025-01-17

音乐播放器源码+可执行程序+测试音乐+截图 快速实现一个音乐播放器,功能如下: 1,播放本地音乐文件 2,有播放、暂停、下一曲、上一曲功能,显示歌曲列表信息 3,显示播放时间进度 4,拖

音乐播放器源码+可执行程序+测试音乐+截图。快速实现一个音乐播放器,功能如下: 1,播放本地音乐文件。 2,有播放、暂停、下一曲、上一曲功能,显示歌曲列表信息。 3,显示播放时间进度。 4,拖

2025-01-07

【信息技术领域】2025中国程序员工作与生活平衡调查报告:超长工时、职业倦怠及混合办公模式分析

内容概要:《2025中国程序员工作与生活平衡(WLB)调查报告》揭示了中国程序员在数字化浪潮下的真实工作与生活状况。报告指出,尽管社会对“996”工作制的讨论不断,但超长工时在互联网行业仍然是常态,如得物(63.8小时/周)和拼多多(62.4小时/周)。混合办公模式逐渐成为主流妥协方案,47%的中国职场人偏好这种模式。加班补偿落实情况堪忧,法律规定与企业实践存在鸿沟。职业倦怠在IT行业尤为严重,71%的员工感到筋疲力尽,主要由工作强度和技术压力引发。程序员的幸福感受城市和企业类型的双重影响,一线城市的高薪伴随高昂生活成本,大厂的光环背后是激烈的“内卷”。报告呼吁程序员主动管理边界,持续学习并做出理性选择;企业应回归人性化管理,建立公平的回报机制,并利用技术为员工减负。 适合人群:关注程序员工作与生活平衡的从业者、企业管理者及政策制定者。 使用场景及目标:①帮助程序员了解行业现状,合理规划职业路径;②为企业提供改善员工福利和管理方式的参考;③为政策制定者提供制定相关政策的依据。 其他说明:报告强调,探寻程序员工作与生活平衡之道,不仅需要个人的努力,还需要企业和社会的共同努力。混合办公模式和AI技术的应用为未来的工作生态带来了新的机遇和挑战。

2025-07-23

【新能源汽车行业】2025年Q2中国新能源汽车市场数据分析:销量增长、政策支持与品牌策略综述了202

2025年Q2中国新能源汽车市场数据分析报告内容概要:2025年第二季度,中国新能源汽车市场继续保持强劲增长,销量达312.1万辆,同比增长26.7%,市场渗透率突破53.3%。比亚迪以68.8%的市场份额领跑,吉利和上汽通用五菱紧随其后。新势力品牌中,小鹏汽车表现突出,交付量创新高,而蔚来和理想汽车则未达预期。政策方面,国家和地方政府通过补贴政策组合拳和基础设施建设,激活了消费需求并引导产业升级,尤其是新能源汽车下乡活动显著推动了农村市场的增长。技术上,L3级自动驾驶面临商业化瓶颈,但智能驾驶技术正在特定场景中逐步突破。电池技术和车网互动等领域也取得了一定进展,但仍需进一步数据支持。 适合人群:汽车行业分析师、投资者、政府政策制定者、新能源汽车制造商及相关从业者。 使用场景及目标:①帮助行业分析师和投资者了解中国新能源汽车市场的最新动态和发展趋势;②为政府政策制定者提供决策依据,以优化未来的政策导向和支持措施;③指导新能源汽车制造商制定市场策略和技术研发方向。 其他说明:本报告强调了政策支持、品牌策略和技术进步对中国新能源汽车市场的重要影响,同时也指出了市场面临的挑战,如合资品牌的转型滞后、技术商业化瓶颈和区域发展不平衡等问题。未来市场机遇集中在出口潜力、下沉市场空间和技术突破窗口,预计2025年全年新能源车销量将突破1600万辆,其中政策直接拉动增量约占总销量的23%。

2025-07-23

创新研报|2024大模型训练数据白皮书-阿里研究院.pdf.pdf

创新研报|2024大模型训练数据白皮书_阿里研究院.pdf.pdf

2025-08-04

【大模型技术】中国企业私有数据处理与向量化技术调研:技术路径、行业实践及未来展望

内容概要:本文深入探讨了中国企业私有数据处理与向量化技术在大模型时代的应用现状、挑战及未来趋势。文章指出,不同于通用大模型依赖公开数据训练,私域大模型通过整合企业内部数据,能够精准响应垂直场景需求,但也面临数据清洗、向量化及存储三大技术挑战。具体而言,不同行业的数据特性决定了差异化的技术路径,如金融行业需处理交易时序数据,医疗行业需标准化非结构化病历文本,零售行业则关注用户行为的多模态融合。此外,合规与安全风险、成本效益平衡也是重要考量。文章还分析了向量化技术的选择,如Word2Vec、BERT等模型在不同场景下的优劣,并介绍了向量数据库的市场格局及选型建议。最后,报告提出了分阶段实施路径及行业差异化策略,强调技术迭代与产业需求的动态平衡对企业赢得“数据主权”竞争的重要性。 适用人群:对私有数据处理与向量化技术感兴趣的从业者,尤其是金融、医疗、零售等行业的数据科学家、算法工程师及CTO等技术决策者。 使用场景及目标:①帮助技术团队选择合适的向量化技术和向量数据库,提升数据处理效率;②指导企业在私有数据处理过程中规避安全合规风险;③为企业制定私有大模型部署策略提供参考,确保技术投入带来最大商业价值。 其他说明:随着大模型技术的发展,国产化替代和技术闭环的趋势日益明显,多模态技术和轻量化部署将成为未来发展方向。企业应根据自身需求和技术能力,分阶段推进私有数据处理与向量化技术的应用,确保技术落地的可行性和安全性。

2025-07-23

windows下 将.epub转pdf格式的安装包 亲测有效,只需要一行命令 离线使用,可商用 文档中的图片都可以转换,字体可以选择,效果很好

windows下 将.epub转pdf格式的安装包 亲测有效,只需要一行命令。离线使用,可商用。文档中的图片都可以转换,字体可以选择,效果很好。

2025-06-13

hivesql全量百亿级拉链表 pyspark 拉链表数据架构 sql全量百亿级拉链表

hivesql全量百亿级拉链表 pyspark 拉链表数据架构 sql全量百亿级拉链表 hivesql全量百亿级拉链表,第一次初始化数据-参考代码 pyspark 拉链表数据架构-union后的大拉链表数据多段连续null值向上填充思路1 pyspark 拉链表数据架构-union后的大拉链表数据多段连续null值向上填充思路2 pyspark全量百亿级拉链表,第一次初始化数据及后续更新-参考代码 sql全量百亿级拉链表,第一次初始化数据及后续更新-参考代码 union后的大拉链表数据多段连续null值向上填充思路1 union后的大拉链表数据多段连续null值向上填充思路2

2025-03-04

亲测可用 知乎热榜爬虫源码

知乎热榜爬虫源码

2025-02-26

2025年Q1中国新能源汽车市场数据分析报告

包含:- 品牌名称- 月度销量(单位:万辆)- 均价(万元)- 核心技术创新点(如电池技术、智能驾驶)

2025-02-26

10道Python文件操作的面试题 包含:1. 题目描述 难度:中等 2. 示例输入 输出 3. 完整代码 带注释 4. 考察知识点

10道Python文件操作的面试题 包含:1. 题目描述 难度:中等 2. 示例输入 输出 3. 完整代码 带注释 4. 考察知识点

2025-02-26

亲测有效 抽奖程序4.0 抽奖过程随机展示动画 一次抽奖多人正确展示结果

【功能清单】 核心功能: - 批量导入TXT/CSV文件(支持多编码) - 动态抽奖动画(2秒随机闪烁+聚焦效果) - 多人中奖记录合并显示(逗号分隔) - 中奖权重设置(CSV第二列) - 历史记录导出(单条记录包含所有中奖者) 交互增强: - 深色/浅色双主题切换 - MP3音效反馈(需ding.mp3文件) - 树形表格展示历史记录 - 实时人数统计显示 高级设置: - 排除已中奖者模式 - 中奖人数调节(1-10人) - 时间格式自定义(3种预设) - 音效开关控制 异常处理: - 智能编码回退机制 - 文件错误精确定位 - 操作防呆设计

2025-01-23

亲测有效 抽奖程序2.0 支持.txt文件导入 自动识别多种编码格式 实时显示导入人数 重复抽奖不限制次数 永久保留记录

功能全景图 功能模块 具体能力 文件管理 - 支持.txt文件导入 - 自动识别多种编码格式 - 实时显示导入人数 抽奖核心 - 随机选取参与者 - 重复抽奖不限制次数 - 实时显示抽奖结果 历史记录 - 时间戳精确到秒 - 永久保留记录(直到程序关闭) - 最新记录置顶显示 用户交互 - 友好的错误弹窗 - 操作成功反馈 - 界面元素状态联动 扩展能力 - 可通过修改encodings列表支持更多编码 - 布局易于调整尺寸和样式 使用流程 导入名单 点击导入按钮 → 选择.txt文件 → 自动识别编码 → 显示人数 执行抽奖 点击抽奖按钮 → 随机选取 → 显示结果 → 记录历史 查看历史 滚动列表框 → 查看完整记录 → 最新记录始终置顶 错误处理 文件读取失败 → 弹窗提示原因 → 建议解决方案

2025-01-23

亲测有效 抽奖程序3.0 多格式导入(TXT/CSV) 权重抽奖 重复抽奖/去重模式切换 中奖人数灵活配置 音效

核心功能** 1. 智能文件管理 - 多格式导入(TXT/CSV) - 批量文件处理(自动合并名单) - 智能编码识别(UTF-8/GBK/GB18030等) - 历史记录导出(CSV/TXT) 2. 高级抽奖规则 - 中奖者排除机制 - 权重抽奖(CSV导入权重值) - 多人同时中奖(1-10人可调) - 重复抽奖/去重模式切换 3. 交互增强 - 实时音效反馈(MP3支持) - 深色/浅色主题切换 - 动态加载动画 - 树形表格历史记录(支持排序) #### **特色功能** 4. 定制化设置 - 时间格式自定义(3种预设+自定义) - 中奖人数灵活配置 - 音效开关控制 5. 异常处理 - 文件错误精准定位 - 智能编码回退机制 - 操作防呆设计(未导入名单禁用抽奖)

2025-01-23

亲测有效 抽奖程序1.0 可以直接运行

抽奖程序功能描述: 1. 有一个输入框,用户可以输入参与抽奖的人员名单,每输入一个名字后按下回车键或点击添加按钮。 2. 有一个按钮,点击后进行抽奖。 3. 抽奖的结果展示在屏幕上。 4. **重新抽奖**:点击“重新抽奖”按钮后,会清空当前的中奖结果,并重新启用“开始抽奖”按钮。 5. **显示抽奖记录**:每次抽奖后,中奖者的名字和抽奖时间都会被记录在 `history` 列表中,并显示在 `Text` 组件中。

2025-01-23

【机器学习实战高阶】基于深度学习的图像分割 源代码与数据集

【机器学习实战高阶】基于深度学习的图像分割 源代码与数据集

2025-01-20

基于深度学习车牌识别 自动识别车牌号码 Automatic License Number Plate Detection and Recognition

基于深度学习车牌识别 自动识别车牌号码 Automatic License Number Plate Detection and Recognition

2025-01-20

【机器学习实战中阶】书籍推荐系统 数据集 archive

【机器学习实战中阶】书籍推荐系统 数据集 archive

2025-01-20

使用Python和OpenCV进行手语识别 源代码 sign-language-recognition-project

使用Python和OpenCV进行手语识别 源代码 sign-language-recognition-project 手语识别与机器学习 项目构思精要:本项目旨在帮助聋哑人,通过创建一个能够识别手语的检测器,促进他们与他人之间的交流。此手语识别系统利用机器学习技术,为聋哑人群体提供了一个宝贵的沟通工具。

2025-01-20

【机器学习实战中阶】基于机器学习的人格预测,测试你的人格

【机器学习实战中阶】基于机器学习的人格预测,测试你的人格

2025-01-20

价格预测器 源代码与数据集

这段代码的目的是读取一个包含价格的数据集,并对其进行基本的信息查看。然后,基于数据集中的加权价格绘制折线图,以便直观地查看价格趋势。接下来,代码将加权价格中的 0 值替换为 NaN,并使用前向填充方法(ffill)来填充这些 NaN 值,以避免数据中的 0 值对模型训练产生影响。最后,再次绘制折线图,显示填充后的数据,确保数据处理的效果。 1. **读取数据集**: - 使用 `pd.read_csv` 函数读取 CSV 文件,并将 "Date" 列设置为索引。 - 使用 `data.info()` 查看数据集的基本信息。 - 使用 `data.head()` 和 `data.tail()` 分别显示数据集的前 5 行和最后 5 行。 2. **绘制初始折线图**: - 使用 Plotly 的 `go.Scatter` 创建一个折线图数据对象,x 轴为日期,y 轴为加权价格。 - 使用 `py.iplot` 在 Jupyter Notebook 中显示折线图。 3. **数据处理**: - 使用 `replace` 方法将加权价格中的 0

2025-01-19

基于机器学习智能文本摘要 深度学习 注意力机制源码 自然语言处理 源代码与数据集

### 背景介绍 该数据集由来自亚马逊的精品食品评论组成,涵盖了超过10年的数据,包含截至2012年10月的所有约500,000条评论。这些评论不仅包含了产品和用户信息、评分,还有纯文本形式的评论内容。值得注意的是,此数据集还收录了亚马逊所有其他类别的商品评论。 ### 内容 - **Reviews.csv**:从名为`Reviews`的SQLite表中提取。 - **database.sqlite**:包含一个名为`Reviews`的表,即上述CSV文件的数据源。 ### 数据详情 - 时间范围:1999年10月至2012年10月 - 总评论数:568,454条 - 用户总数:256,059位 - 涉及产品数:74,258种 - 审评次数超过50次的用户数:260位

2025-01-18

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除