- 博客(373)
- 资源 (26)
- 收藏
- 关注
原创 【深度分析】DeepSeek震撼登场!中美AI对决,美国慌了!
当人工智能的浪潮席卷全球,一场关乎未来的科技对决正在悄然展开。2025年,中国纯自主知识产权的人工智能大模型DeepSeek横空出世,犹如一颗重磅炸弹,直接炸响了全球科技圈。而美国,这个曾经在人工智能领域占据绝对优势的科技强国,却在这场对决中慌了神。
2025-02-08 12:45:45
205
原创 【深度分析】火星采样竞赛:中美太空对决,美国面临“输不起”的危机!
火星,这颗红色星球,一直是人类探索宇宙的焦点之一。2025年,火星样本返回任务即将拉开帷幕,然而,这场太空竞赛却充满了戏剧性和冲突。中国在火星采样领域的快速崛起,让欧美联合的火星样本返回任务感到了前所未有的压力。
2025-02-08 12:45:24
137
原创 【深度分析】AI来袭!你的工作还在安全区吗?
如果你对AI技术对职业的影响有更多见解,或者想了解如何应对这一变革,欢迎在评论区留言。让我们共同探讨如何在AI时代保持竞争力。
2025-02-08 12:23:33
729
原创 【深度分析】DeepSeek-V3:AI 省钱与高效的奇迹,打破技术壁垒的东方魔法
在AI大模型训练的“烧钱战场”上,成本与性能就像天平的两端,让众多研发团队绞尽脑汁。然而,DeepSeek-V3的出现,却如同打破常规的“奇兵”,以令人惊叹的方式重新定义了这场博弈。当OpenAI的GPT系列、Claude、Gemini和Llama 3等模型还在为动辄数亿美元的训练成本发愁时,DeepSeek-V3仅用557.6万美元的预算,在2048个H800 GPU集群上,以3.7天/万亿tokens的训练时间,就达到了与这些巨头比肩的性能。
2025-02-08 12:23:19
279
原创 【亲测可用】DeepSeek满血版免费用,附详细步骤,抓紧上车!DeepSeek 671B 满血版震撼上线!联网、稳定、免费、高可用!
相比之下,其他版本的DeepSeek在性能上明显逊色不少,尤其是在复杂任务处理和大规模数据检索方面,满血版的优势更是凸显无疑。DeepSeek 671B满血版的上线,不仅为用户带来了全新的体验,也为整个AI搜索行业树立了新的标杆。这些技术的应用,使得671B在处理大规模任务时,能够实现接近零的通信开销,极大地提升了整体效率。总之,DeepSeek 671B满血版的上线,标志着AI搜索进入了一个全新的阶段。而就在最近,DeepSeek 671B满血版的上线,犹如一颗重磅炸弹,彻底引爆了整个AI搜索圈。
2025-02-08 11:41:17
106
原创 【深度分析】DeepSeek预测 AI 浪潮来袭:这八类岗位正站在失业悬崖边,你在其中吗?
富士康郑州工厂机器人替代率从 2016 年的 30% 飙升至 2023 年的 65%,越来越多的工厂开始引入自动化设备,那些重复性高、技术含量低的工作,正逐渐被机器人的 “铁臂” 所取代。从能精准识别文字的 OCR 技术,到宛如真人对话的自然语言处理(NLP),再到火遍全球的 ChatGPT、GPT-4 等大语言模型,AI 的每一次突破都在重塑着行业生态。在科技飞速发展的当下,AI 不再是科幻电影里的遥远幻想,而是真切地融入了我们的生活与工作,带来便利的同时,也悄然掀起了就业市场的惊涛骇浪。
2025-02-08 11:21:16
564
原创 【深度分析】幻方的 Deepseek 模型专家交流纪要
同时,随着技术的不断发展,DeepSeek 也将面临更多的挑战和机遇,如何进一步提升模型性能、拓展应用场景、降低成本,将是其未来发展的关键。例如,每日互动作为幻方量化的二股东,其联合创始人也是幻方量化的技术负责人,为 DeepSeek 提供海量用户行为语料数据等,近期关注度较高。在科技飞速发展的当下,人工智能领域的每一次突破都备受瞩目。2025 年 2 月,幻方量化发布的 DeepSeek-V3 模型一经问世,便在国内外迅速出圈,引发了资本市场的热烈讨论,成为了几乎所有投资者圈层关注的焦点。
2025-02-08 11:20:46
629
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.45 用NumPy进行图像分割
图像分割是计算机视觉中的一个基本任务,它将图像划分为多个区域,每个区域具有相似的属性。这些属性可以是颜色、纹理、形状等。图像分割的目标是将图像中的不同对象或区域区分开来,从而为后续的图像分析和处理提供方便。图像分割的定义:将图像划分为多个互不重叠的区域,每个区域具有相似的属性。图像分割的意义:图像分割可以用于目标检测、图像分类、医学影像分析等任务。
2025-02-08 09:21:09
561
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.44用NumPy进行图像识别预处理
在本篇文章中,我们详细介绍了使用 NumPy 进行图像识别预处理的基本概念和方法。通过归一化、裁剪、缩放、旋转和翻转等操作,可以在处理图像数据时显著提高性能和模型的泛化能力。我们还通过实际应用案例展示了如何在数据增强和图像分类任务中使用 NumPy 进行图像预处理。
2025-02-08 09:20:57
581
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.43 用NumPy进行并行计算
并行计算是提高大规模数据处理性能的重要手段。本文详细介绍了并行计算的基本概念,以及使用NumPy、NumExpr和Dask进行并行计算的方法。这篇文章包含了详细的原理介绍、代码示例、源码注释以及案例等。希望这对您有帮助。如果有任何问题请随私信或评论告诉我。
2025-02-08 09:20:47
362
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.42用NumPy进行高性能计算
在本篇文章中,我们详细介绍了使用 NumPy 进行高性能计算的基本概念和方法。通过向量化运算、广播机制、内存预分配和多线程运算,可以在处理大规模数据时显著提高性能。我们还通过实际应用案例展示了如何在大规模数据处理、机器学习和图像处理中使用 NumPy 进行高性能计算。
2025-02-08 09:20:35
440
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.41 用NumPy进行大规模数据处理
在处理大规模数据时,性能优化是一个重要的问题。NumPy 提供了高效的数组存储和处理方法,通过向量化操作、广播机制和高效的函数,可以显著提高数据处理的性能。这篇文章包含了详细的原理介绍、代码示例、源码注释以及案例等。希望这对您有帮助。如果有任何问题请随私信或评论告诉我。
2025-02-08 09:10:17
461
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.40用NumPy进行矩阵运算优化
矩阵是由m×nm \times nm×n个数aija_{ij}aij排成的mmm行nnnAa11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮am1am2⋯amnAa11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn。
2025-02-08 09:10:04
515
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.39 用NumPy进行优化问题求解
优化问题是指在一组约束条件下,找到使某个目标函数最大化或最小化的解。优化问题在许多领域都有广泛的应用,如机器学习、工程设计、经济学等。
2025-02-08 07:47:39
403
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.38 用NumPy实现深度强化学习
为了演示,我们以一个简单的迷宫环境为例,智能体需要在环境中找到目标位置。self.state = np.array([0, 0]) # 初始状态self.goal = np.array([4, 4]) # 目标位置self.maze = np.zeros((5, 5)) # 迷宫大小self.maze[self.goal[0], self.goal[1]] = 1 # 目标位置标记为1self.maze[3, 1] = -1 # 设定障碍物# 重置环境# 执行动作并返回新的状态、奖励和是否终止。
2025-02-08 01:11:52
404
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.37 用NumPy实现自动编码器
自动编码器(Autoencoder)是一种神经网络模型,其目标是学习一个低维度的表示(编码)来压缩数据,然后再从这个低维度的表示(解码)重建原始数据。降维:将高维度的数据压缩到低维度的空间中。去噪:从噪声数据中恢复原始数据。数据生成:生成与训练数据相似的新数据。# 定义模型参数input_dim = 784 # 输入维度(例如MNIST图像的维度)encoding_dim = 32 # 编码维度learning_rate = 0.001 # 学习率epochs = 100 # 训练轮数。
2025-02-07 13:40:32
833
原创 【深度分析】Deepseek为什么会这么爆火?
DeepSeek(深度求索)在2025年初的爆火现象,是多重因素共同作用的结果。其成功不仅在于技术突破,更源于对市场需求、成本控制与生态建设的精准把握。随着国产芯片(如华为昇腾)在RL框架中表现提升[]],DeepSeek或将成为全球AI竞争格局重构的关键变量。一、技术突破:颠覆性创新与极致性价比。二、市场契合:精准把握需求与填补空白。三、资本与生态:资源整合与开源策略。四、行业影响与传播效应。
2025-02-07 13:38:19
1428
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.36 用NumPy实现长短时记忆网络(LSTM)
参考资料链接1. LSTM论文3. TensorFlow官方文档4. PyTorch官方文档5. LSTM详解6. LSTM实现7. NumPy官方文档8. LSTM在自然语言处理中的应用9. LSTM在时间序列预测中的应用10. LSTM在语音识别中的应用11. LSTM在推荐系统中的应用12. LSTM的数学基础13. NumPy实战这篇文章包含了详细的原理介绍、代码示例、源码注释以及案例等。希望这对您有帮助。如果有任何问题请随私信或评论告诉我。
2025-02-07 13:32:27
422
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.35 用NumPy实现递归神经网络
通过上述步骤,我们实现了一个简单的递归神经网络(RNN)来处理序列数据。RNN 通过在每个时间步中维护隐藏状态,能够捕捉序列中的时间依赖关系。我们在生成的随机序列数据上训练了模型,并评估了模型的性能。尽管在随机数据上的性能可能不高,但在实际应用中,RNN 能够很好地处理时间序列数据和自然语言处理中的任务。希望本文能够帮助你更好地理解RNN的工作原理,并提供一个实用的实现示例。如果你有任何疑问或需要进一步的帮助,请随时留言!
2025-02-07 13:21:17
639
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.34 用NumPy实现卷积神经网络
卷积神经网络(Convolutional Neural Network, CNN)是一种专门用于处理具有网格结构的数据(如图像)的神经网络。CNN通过卷积层、池化层和全连接层等操作,有效地捕捉图像中的局部特征和层次结构。在本文中,我们详细介绍了如何使用NumPy实现卷积神经网络(CNN),包括卷积层、池化层和全连接层的实现。我们还通过一个简单的图像分类案例,展示了如何使用这些层构建和训练CNN模型。优化算法:引入更高级的优化算法,如Adam、RMSprop等。数据增强。
2025-02-07 13:13:24
546
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.33 用NumPy进行梯度下降优化
用NumPy进行梯度下降优化梯度下降优化的基本概念使用NumPy实现梯度下降优化的方法梯度下降优化的实际应用案例代码实现:详细原理和源码注释总结与参考资料梯度下降的定义梯度下降的种类梯度下降的优缺点初始化权重和偏置前向传播计算损失反向传播更新权重和偏置线性回归逻辑回归神经网络线性回归的梯度下降逻辑回归的梯度下降神经网络的梯度下降1. 梯度下降优化的基本概念1.1 梯度下降的定义梯度下降(Gradient Descent)是一种优化算法,用于最小化一个函数。在机器学习和深度学习中,梯度下降主要用来最小化
2025-02-07 13:10:19
680
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.32 用NumPy实现简单的前馈神经网络
前馈神经网络(Feedforward Neural Network, FNN)是一种无反馈的多层神经网络,其中每一层的神经元只接收前一层的输入,并将输出传递给下一层。数据在神经网络中按照前向传播的方式流动,从输入层到输出层,不包含反馈路径。这种结构使其适用于解决多种监督学习问题,如分类和回归。本文详细介绍了如何使用NumPy实现一个简单的前馈神经网络,并通过XOR问题的应用案例展示了其工作原理。通过前向传播和反向传播,我们可以训练神经网络以学习数据中的复杂特征,并优化损失函数。
2025-02-07 11:59:42
666
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.31 用NumPy进行深度学习基础计算
神经网络是一种模拟人脑神经结构的计算模型,由大量的神经元组成。每个神经元接收输入信号,经过处理后生成输出信号。神经网络通过多层神经元的连接,能够对复杂的输入数据进行非线性变换,从而实现对数据的高效表示和分类。本文详细介绍了如何使用NumPy进行深度学习的基础计算,包括前向传播、反向传播、损失函数的计算和梯度下降算法。这篇文章包含了详细的原理介绍、代码示例、源码注释以及案例等。希望这对您有帮助。如果有任何问题请随私信或评论告诉我。
2025-02-07 11:07:51
616
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.30 用NumPy进行信号变换
信号变换是信号处理中的一项基本技术,通过将信号从时域变换到频域,可以更好地分析信号的特征和行为。本篇文章将从信号变换的基本概念入手,逐步介绍如何使用NumPy进行离散傅里叶变换(DFT)和快速傅里叶变换(FFT),并通过实际应用案例展示其重要性和应用场景。最后,我们将提供详细的代码实现和注释,帮助读者更好地理解和应用这项技术。信号变换是指将信号从一个域变换到另一个域的过程,最常见的变换是从时域变换到频域。时域信号表示信号随时间的变化,而频域信号表示信号的频率组成。
2025-02-07 10:54:56
539
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.29 用NumPy进行随机数生成与统计分析
随机数是数值序列中的一个元素,该序列中的每个元素都是不确定的,没有明显的规律可循。在计算机科学中,随机数通常通过算法生成,因此也被称为伪随机数。本文详细介绍了如何使用NumPy生成不同分布的随机数,并进行基本的统计分析。通过具体的代码实现和示例,读者可以更好地理解随机数生成和统计分析的基本原理和方法。此外,我们还探讨了随机数生成和统计分析在金融、机器学习和数据模拟中的实际应用案例,希望这些内容能够帮助读者在实际项目中应用这些技术。
2025-02-07 10:52:21
585
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.28 用NumPy进行质因数分解
质因数分解是将一个合数分解成若干个质数的乘积的过程。在计算机科学和数学中,质因数分解有着广泛的应用,如加密算法、数论研究等。本篇文章将从质因数分解的基本概念入手,逐步介绍如何使用NumPy实现质因数分解的方法,并通过实际应用案例展示其重要性和应用场景。最后,我们将提供详细的代码实现和注释,帮助读者更好地理解和应用这项技术。质因数分解(Prime Factorization)是指将一个正整数分解成若干个质数的乘积的过程。质数是只能被1和自身整除的自然数,如2、3、5、7等。
2025-02-07 10:45:42
505
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.27 用NumPy生成斐波那契数列
Fn0ifn01ifn1Fn−1Fn−2ifn1F(n) =Fn⎩⎨⎧01Fn−1Fn−2ifn0ifn1ifn1斐波那契数列的前几项为:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …本文详细介绍了如何使用NumPy生成斐波那契数列,包括递归方法、迭代方法和矩阵方法。通过具体的代码实现和示例,读者可以更好地理解斐波那契数列的生成原理和不同方法的优缺点。
2025-02-07 10:42:20
430
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.26 用NumPy进行统计模型模拟
在本篇文章中,我们将探讨如何使用NumPy进行统计模型的模拟。统计模型是现代数据分析和科学研究中不可或缺的一部分,通过模拟这些模型,我们可以在有限的数据基础上进行更深入的分析和预测。我们将从统计模型的基本概念入手,逐步介绍如何使用NumPy进行蒙特卡洛模拟和Bootstrap等常见的统计模拟方法,并通过实际应用案例来展示这些方法的威力。最后,我们将提供详细的代码实现和注释,帮助读者更好地理解和应用这些技术。统计模型是用于描述数据生成过程的数学模型。
2025-02-07 10:25:10
325
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.25 用NumPy进行热力学模拟
热力学是研究热能和其他形式能量之间转换的科学。它在材料科学、工程学和物理学等领域有着广泛的应用。热力学模拟可以帮助我们理解和预测物质在不同条件下的热行为。本文详细介绍了如何使用NumPy进行热力学模拟,包括一维、二维和三维热传导方程的离散化和数值求解方法。通过具体的代码实现和可视化,读者可以更好地理解热传导的物理过程和数值模拟的步骤。希望本篇文章能够帮助你在热力学模拟方面取得进步,祝你学习顺利!
2025-02-07 10:23:06
709
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.24 用NumPy进行流体力学模拟
流体力学是研究流体(液体和气体)行为的科学,包括流体的运动、静止状态以及与固体和其他流体的相互作用。流体力学在航空航天、海洋工程、气象学、生物医学等领域有着广泛的应用。高效性:NumPy 提供了高效的数组操作,可以快速进行大规模的数值计算。灵活性:NumPy 的数组和函数可以方便地进行各种数值方法的实现,如迎风格式、有限差分和格子玻尔兹曼方法。可视化:结合 Matplotlib,可以轻松生成高质量的可视化结果,帮助理解模拟过程和结果。
2025-02-07 10:19:09
610
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.23 用NumPy进行电磁场模拟
电磁场是电场和磁场的总称,描述了电荷和电流在空间和时间中的相互作用。电磁场理论是现代物理学和工程学的基础之一,广泛应用于通信、雷达、材料科学等领域。电磁场模拟的基本概念介绍了电磁场的基本定义和重要性。详细解释了麦克斯韦方程组及其在电磁场模拟中的应用。讨论了电磁场的数值求解方法,特别是有限差分法(FDM)。使用NumPy进行电磁场模拟的方法解释了电磁场模拟的离散化过程,包括时间和空间步长的选择。介绍了如何使用有限差分法求解麦克斯韦方程组,提供了具体的公式和步骤。电磁场模拟的实际应用案例。
2025-02-06 23:15:01
678
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.22 用NumPy进行物理系统模拟
物理系统是指描述自然界中物理现象和规律的数学模型。这些模型通常由微分方程、代数方程和其他数学关系组成。物理系统的模拟是指通过数值计算方法,使用计算机程序来近似求解这些数学模型,从而预测系统的动态行为。准确性:NumPy提供高效、精确的数值计算功能,使得物理系统的模拟更加准确。效率:NumPy的数组操作非常高效,适合处理大规模数据。可视化:Matplotlib等绘图库可以方便地将模拟结果可视化,便于理解和分析。
2025-02-06 23:09:01
692
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.21 用NumPy进行物理模拟计算
质点运动方程的模拟牛顿第二定律:我们使用牛顿第二定律d2xdt2Fxtmdt2d2xmFxt进行了模拟。欧拉法:通过简单的一步近似,逐步更新位置和速度。龙格-库塔法(RK4):通过四步近似,提高了模拟的精度和稳定性。波动方程的模拟一维波动方程:使用有限差分法和欧拉法进行了模拟。二维波动方程:使用有限差分法进行了模拟,展示了波动在二维空间中的传播行为。实际应用案例弹簧-质量-阻尼系统:模拟了一个受弹簧力和阻尼力影响的质点的运动。简谐振子。
2025-02-06 22:40:37
342
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.20 用NumPy进行音频特征提取
3.20 用NumPy进行音频特征提取3.20.1 音频特征提取的基本概念3.20.2 使用NumPy进行音频特征提取的方法3.20.3 音频特征提取的实际应用案例3.20.4 代码实现:详细原理和源码注释3.20.5 参考文献和资料3.20.1 音频特征提取的基本概念音频特征提取是从音频信号中提取有用信息的过程。这些特征可以用于各种任务,如音频分类、语音识别、音乐推荐等。音频特征可以分为时域特征和频域特征两大类。时域特征:直接从时域信号中提取,常见的时域特征包括:频域特征:通过对信号进行频域转换(如傅
2025-02-06 22:21:18
464
原创 【深度分析】OpenAI放大招!ChatGPT搜索免费开放,前有OpenAI后有DeepSeek谷歌霸权要被终结?
ChatGPT搜索免费且无需注册开放是搜索引擎行业的一个重大变革,对搜索引擎市场格局、用户的搜索习惯以及竞争态势等多方面都产生了深远的影响。ChatGPT搜索与传统搜索引擎存在本质上的区别,无论是工作原理、搜索体验还是应用场景方面。无需注册即可使用ChatGPT搜索这一特性赋予了ChatGPT搜索很多特点和显著优势。OpenAI免费开放ChatGPT搜索对搜索引擎行业的影响。OpenAI免费开放ChatGPT搜索对搜索引擎行业的影响。网友对搜索引擎行业的这次变革持有不同的观点。搜索引擎行业未来发展趋势。
2025-02-06 18:10:28
473
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.18 用NumPy进行音频信号处理
音频信号是指表示声音波形的数字信号。这些数字信号通常以时间序列的形式存储,每个时间点的值表示声音波形的振幅。音频信号可以是单声道(Mono)或多声道(Stereo)的,其中多声道数据通常包含多个时间序列(每个声道一个)。本文详细介绍了如何使用NumPy进行音频信号处理,包括音频信号的基本概念、傅里叶变换、滤波和增强技术,以及实际应用案例。通过这些方法,我们可以有效地去除音频中的噪声、压缩音频文件、提取有用特征并进行语音识别等任务。希望本文能够帮助你更好地理解和应用音频信号处理技术。
2025-02-06 12:55:56
700
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.17 用NumPy实现音频滤波器
通过本文,我们详细介绍了如何使用 NumPy 实现音频滤波器,包括低通滤波器、高通滤波器和带通滤波器。我们不仅介绍了这些滤波器的基本概念,还通过具体的代码示例展示了它们的实现方法。这些滤波器在音频降噪、音频均衡和语音识别等实际应用中发挥着重要作用。未来,我们将继续探讨更多高级的音频处理技术,例如使用 Scipy 库进行更复杂的滤波器设计,以及如何结合机器学习进行更智能的音频处理。敬请期待!
2025-02-06 11:12:42
566
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.16 用NumPy处理声音数据
声音数据是表示声音波形的数字信号。这些数字信号通常是以时间序列的形式存储,每个时间点的值表示声音波形的振幅。声音数据可以是单声道(Mono)或多声道(Stereo)的,其中多声道数据通常包含多个时间序列(每个声道一个)。在本篇文章中,我们详细介绍了如何使用NumPy处理声音数据,包括声音数据的基本概念、读取和写入声音数据、声音信号的可视化、简单处理(如裁剪和拼接)、滤波和特征提取。通过这些方法,我们可以深入理解和处理声音数据,为后续的音频分析和机器学习任务打下坚实的基础。
2025-02-05 21:20:54
666
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.15 用NumPy进行特征工程
特征工程是机器学习中不可或缺的一部分,通过合理地提取和转换特征,可以显著提升模型的性能。NumPy 作为一个强大的数值计算库,提供了多种方法来帮助我们进行特征工程的处理。本文通过具体的例子和代码示例,详细介绍了如何使用 NumPy 进行特征提取和特征转换,希望对读者有所帮助。在未来的文章中,我们将探讨更多高级的特征工程技术和具体的实践案例,包括使用 Pandas、Scikit-learn 等库进行特征工程的处理。敬请期待!
2025-02-05 21:14:03
889
原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.14 用NumPy进行数据清洗
数据清洗(Data Cleaning)是指对数据进行预处理,以确保数据的质量和一致性。通过数据清洗,我们可以移除或修复数据中的错误、不一致和缺失值,从而使数据更适合用于数据分析和机器学习任务。在本篇文章中,我们详细介绍了如何使用NumPy进行数据清洗,包括缺失值处理、异常值处理、重复数据处理和数据类型转换。通过这些方法,我们可以有效地提高数据的质量,使数据更适合作为后续数据分析和机器学习任务的输入。参考资料名称链接NumPy官方文档Pandas官方文档Matplotlib官方文档。
2025-02-05 20:57:40
914
亲测有效 抽奖程序4.0 抽奖过程随机展示动画 一次抽奖多人正确展示结果
2025-01-23
亲测有效 抽奖程序3.0 多格式导入(TXT/CSV) 权重抽奖 重复抽奖/去重模式切换 中奖人数灵活配置 音效
2025-01-23
亲测有效 抽奖程序2.0 支持.txt文件导入 自动识别多种编码格式 实时显示导入人数 重复抽奖不限制次数 永久保留记录
2025-01-23
亲测有效 抽奖程序1.0 可以直接运行
2025-01-23
基于深度学习车牌识别 自动识别车牌号码 Automatic License Number Plate Detection and Recognition
2025-01-20
使用Python和OpenCV进行手语识别 源代码 sign-language-recognition-project
2025-01-20
价格预测器 源代码与数据集
2025-01-19
基于机器学习智能文本摘要 深度学习 注意力机制源码 自然语言处理 源代码与数据集
2025-01-18
泰坦尼克号生存预测 数据集 titanic
2025-01-18
使用LSTM机器学习预测股票价格 源代码与数据集
2025-01-18
基于深度学习的乳腺癌分类 源代码与数据集
2025-01-18
使用librosa进行语音情感识别 数据集 speech-emotion-recognition-ravdess-data
2025-01-18
使用Pandas和OpenCV进行颜色检测 源代码与数据集
2025-01-18
使用Python进行MNIST手写数字识别 源代码与数据集 Python-Project-Handwritten-digit-recognizer
2025-01-18
使用深度学习创建您自己的表情符号 源代码与数据集 FER-2013 训练集:28,709张图像 测试集:3,589张图像 七种情感类别
2025-01-18
鸢尾花分类项目 源代码与数据集 iris-flower-classification-project
2025-01-18
使用CNN和Keras进行交通标志识别,准确率达到95% 源代码和数据集 Python-Project-Traffic-Sign-Classification
2025-01-18
使用OpenCV和Keras的驾驶员疲劳检测系统 代码 Drowsiness detection
2025-01-17
使用OpenCV和Keras的驾驶员疲劳检测系统 数据集 yawn-eye-dataset-new
2025-01-17
【机器学习实战入门】学习使用NLTK和Keras构建你的第一个聊天机器人 chatbot-python-project-data-codes
2025-01-17
【机器学习实战入门】有趣的Python项目:使用OpenCV进行性别和年龄检测-配套代码图片资料等gad
2025-01-17
青少年科技创新大赛改革:聚焦15至24岁参赛者的制度优化与创新能力培养
2025-01-17
2025年世界大学生超级计算机竞赛:赛制解析、技术挑战及全球影响力分析
2025-01-17
pyspark,hivesql,sql,百亿级数据,数据溯源,拉链表,全量拉链表生成,拉链表增量数据生成
2025-01-17
音乐播放器源码+可执行程序+测试音乐+截图 快速实现一个音乐播放器,功能如下: 1,播放本地音乐文件 2,有播放、暂停、下一曲、上一曲功能,显示歌曲列表信息 3,显示播放时间进度 4,拖
2025-01-07
量化交易最佳论文 量化交易技术
2023-03-31
中国期货市场微观特征因子及微观交易策略-以股指期货为例(龚博士).mp3 中国期货市场微观特征因子及微观交易策略-以股指期货为例
2023-03-30
大咖深度分享 CTA策略主要研究方式及发展方向
2023-03-30
cocos2d-x实战项目
2022-09-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人