自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

代码学习,前言技术分享,深度分析编程技术,普及科普编程技术

代码学习,前言技术分享,深度分析编程技术,普及科普编程技术,天天都要敲代码

  • 博客(373)
  • 资源 (26)
  • 收藏
  • 关注

原创 【深度分析】DeepSeek震撼登场!中美AI对决,美国慌了!

当人工智能的浪潮席卷全球,一场关乎未来的科技对决正在悄然展开。2025年,中国纯自主知识产权的人工智能大模型DeepSeek横空出世,犹如一颗重磅炸弹,直接炸响了全球科技圈。而美国,这个曾经在人工智能领域占据绝对优势的科技强国,却在这场对决中慌了神。

2025-02-08 12:45:45 205

原创 【深度分析】火星采样竞赛:中美太空对决,美国面临“输不起”的危机!

火星,这颗红色星球,一直是人类探索宇宙的焦点之一。2025年,火星样本返回任务即将拉开帷幕,然而,这场太空竞赛却充满了戏剧性和冲突。中国在火星采样领域的快速崛起,让欧美联合的火星样本返回任务感到了前所未有的压力。

2025-02-08 12:45:24 137

原创 【深度分析】AI来袭!你的工作还在安全区吗?

如果你对AI技术对职业的影响有更多见解,或者想了解如何应对这一变革,欢迎在评论区留言。让我们共同探讨如何在AI时代保持竞争力。

2025-02-08 12:23:33 729

原创 【深度分析】DeepSeek-V3:AI 省钱与高效的奇迹,打破技术壁垒的东方魔法

在AI大模型训练的“烧钱战场”上,成本与性能就像天平的两端,让众多研发团队绞尽脑汁。然而,DeepSeek-V3的出现,却如同打破常规的“奇兵”,以令人惊叹的方式重新定义了这场博弈。当OpenAI的GPT系列、Claude、Gemini和Llama 3等模型还在为动辄数亿美元的训练成本发愁时,DeepSeek-V3仅用557.6万美元的预算,在2048个H800 GPU集群上,以3.7天/万亿tokens的训练时间,就达到了与这些巨头比肩的性能。

2025-02-08 12:23:19 279

原创 【亲测可用】DeepSeek满血版免费用,附详细步骤,抓紧上车!DeepSeek 671B 满血版震撼上线!联网、稳定、免费、高可用!

相比之下,其他版本的DeepSeek在性能上明显逊色不少,尤其是在复杂任务处理和大规模数据检索方面,满血版的优势更是凸显无疑。DeepSeek 671B满血版的上线,不仅为用户带来了全新的体验,也为整个AI搜索行业树立了新的标杆。这些技术的应用,使得671B在处理大规模任务时,能够实现接近零的通信开销,极大地提升了整体效率。总之,DeepSeek 671B满血版的上线,标志着AI搜索进入了一个全新的阶段。而就在最近,DeepSeek 671B满血版的上线,犹如一颗重磅炸弹,彻底引爆了整个AI搜索圈。

2025-02-08 11:41:17 106

原创 【深度分析】DeepSeek预测 AI 浪潮来袭:这八类岗位正站在失业悬崖边,你在其中吗?

富士康郑州工厂机器人替代率从 2016 年的 30% 飙升至 2023 年的 65%,越来越多的工厂开始引入自动化设备,那些重复性高、技术含量低的工作,正逐渐被机器人的 “铁臂” 所取代。从能精准识别文字的 OCR 技术,到宛如真人对话的自然语言处理(NLP),再到火遍全球的 ChatGPT、GPT-4 等大语言模型,AI 的每一次突破都在重塑着行业生态。在科技飞速发展的当下,AI 不再是科幻电影里的遥远幻想,而是真切地融入了我们的生活与工作,带来便利的同时,也悄然掀起了就业市场的惊涛骇浪。

2025-02-08 11:21:16 564

原创 【深度分析】幻方的 Deepseek 模型专家交流纪要

同时,随着技术的不断发展,DeepSeek 也将面临更多的挑战和机遇,如何进一步提升模型性能、拓展应用场景、降低成本,将是其未来发展的关键。例如,每日互动作为幻方量化的二股东,其联合创始人也是幻方量化的技术负责人,为 DeepSeek 提供海量用户行为语料数据等,近期关注度较高。在科技飞速发展的当下,人工智能领域的每一次突破都备受瞩目。2025 年 2 月,幻方量化发布的 DeepSeek-V3 模型一经问世,便在国内外迅速出圈,引发了资本市场的热烈讨论,成为了几乎所有投资者圈层关注的焦点。

2025-02-08 11:20:46 629

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.45 用NumPy进行图像分割

图像分割是计算机视觉中的一个基本任务,它将图像划分为多个区域,每个区域具有相似的属性。这些属性可以是颜色、纹理、形状等。图像分割的目标是将图像中的不同对象或区域区分开来,从而为后续的图像分析和处理提供方便。图像分割的定义:将图像划分为多个互不重叠的区域,每个区域具有相似的属性。图像分割的意义:图像分割可以用于目标检测、图像分类、医学影像分析等任务。

2025-02-08 09:21:09 561

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.44用NumPy进行图像识别预处理

在本篇文章中,我们详细介绍了使用 NumPy 进行图像识别预处理的基本概念和方法。通过归一化、裁剪、缩放、旋转和翻转等操作,可以在处理图像数据时显著提高性能和模型的泛化能力。我们还通过实际应用案例展示了如何在数据增强和图像分类任务中使用 NumPy 进行图像预处理。

2025-02-08 09:20:57 581

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.43 用NumPy进行并行计算

并行计算是提高大规模数据处理性能的重要手段。本文详细介绍了并行计算的基本概念,以及使用NumPy、NumExpr和Dask进行并行计算的方法。这篇文章包含了详细的原理介绍、代码示例、源码注释以及案例等。希望这对您有帮助。如果有任何问题请随私信或评论告诉我。

2025-02-08 09:20:47 362

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.42用NumPy进行高性能计算

在本篇文章中,我们详细介绍了使用 NumPy 进行高性能计算的基本概念和方法。通过向量化运算、广播机制、内存预分配和多线程运算,可以在处理大规模数据时显著提高性能。我们还通过实际应用案例展示了如何在大规模数据处理、机器学习和图像处理中使用 NumPy 进行高性能计算。

2025-02-08 09:20:35 440

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.41 用NumPy进行大规模数据处理

在处理大规模数据时,性能优化是一个重要的问题。NumPy 提供了高效的数组存储和处理方法,通过向量化操作、广播机制和高效的函数,可以显著提高数据处理的性能。这篇文章包含了详细的原理介绍、代码示例、源码注释以及案例等。希望这对您有帮助。如果有任何问题请随私信或评论告诉我。

2025-02-08 09:10:17 461

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.40用NumPy进行矩阵运算优化

矩阵是由m×nm \times nm×n个数aija_{ij}aij​排成的mmm行nnnAa11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮am1am2⋯amnA​a11​a21​⋮am1​​a12​a22​⋮am2​​⋯⋯⋱⋯​a1n​a2n​⋮amn​​​。

2025-02-08 09:10:04 515

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.39 用NumPy进行优化问题求解

优化问题是指在一组约束条件下,找到使某个目标函数最大化或最小化的解。优化问题在许多领域都有广泛的应用,如机器学习、工程设计、经济学等。

2025-02-08 07:47:39 403

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.38 用NumPy实现深度强化学习

为了演示,我们以一个简单的迷宫环境为例,智能体需要在环境中找到目标位置。self.state = np.array([0, 0]) # 初始状态self.goal = np.array([4, 4]) # 目标位置self.maze = np.zeros((5, 5)) # 迷宫大小self.maze[self.goal[0], self.goal[1]] = 1 # 目标位置标记为1self.maze[3, 1] = -1 # 设定障碍物# 重置环境# 执行动作并返回新的状态、奖励和是否终止。

2025-02-08 01:11:52 404

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.37 用NumPy实现自动编码器

自动编码器(Autoencoder)是一种神经网络模型,其目标是学习一个低维度的表示(编码)来压缩数据,然后再从这个低维度的表示(解码)重建原始数据。降维:将高维度的数据压缩到低维度的空间中。去噪:从噪声数据中恢复原始数据。数据生成:生成与训练数据相似的新数据。# 定义模型参数input_dim = 784 # 输入维度(例如MNIST图像的维度)encoding_dim = 32 # 编码维度learning_rate = 0.001 # 学习率epochs = 100 # 训练轮数。

2025-02-07 13:40:32 833

原创 【深度分析】Deepseek为什么会这么爆火?

DeepSeek(深度求索)在2025年初的爆火现象,是多重因素共同作用的结果。其成功不仅在于技术突破,更源于对市场需求、成本控制与生态建设的精准把握。随着国产芯片(如华为昇腾)在RL框架中表现提升[]],DeepSeek或将成为全球AI竞争格局重构的关键变量。一、技术突破:颠覆性创新与极致性价比。二、市场契合:精准把握需求与填补空白。三、资本与生态:资源整合与开源策略。四、行业影响与传播效应。

2025-02-07 13:38:19 1428

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.36 用NumPy实现长短时记忆网络(LSTM)

参考资料链接1. LSTM论文3. TensorFlow官方文档4. PyTorch官方文档5. LSTM详解6. LSTM实现7. NumPy官方文档8. LSTM在自然语言处理中的应用9. LSTM在时间序列预测中的应用10. LSTM在语音识别中的应用11. LSTM在推荐系统中的应用12. LSTM的数学基础13. NumPy实战这篇文章包含了详细的原理介绍、代码示例、源码注释以及案例等。希望这对您有帮助。如果有任何问题请随私信或评论告诉我。

2025-02-07 13:32:27 422

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.35 用NumPy实现递归神经网络

通过上述步骤,我们实现了一个简单的递归神经网络(RNN)来处理序列数据。RNN 通过在每个时间步中维护隐藏状态,能够捕捉序列中的时间依赖关系。我们在生成的随机序列数据上训练了模型,并评估了模型的性能。尽管在随机数据上的性能可能不高,但在实际应用中,RNN 能够很好地处理时间序列数据和自然语言处理中的任务。希望本文能够帮助你更好地理解RNN的工作原理,并提供一个实用的实现示例。如果你有任何疑问或需要进一步的帮助,请随时留言!

2025-02-07 13:21:17 639

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.34 用NumPy实现卷积神经网络

卷积神经网络(Convolutional Neural Network, CNN)是一种专门用于处理具有网格结构的数据(如图像)的神经网络。CNN通过卷积层、池化层和全连接层等操作,有效地捕捉图像中的局部特征和层次结构。在本文中,我们详细介绍了如何使用NumPy实现卷积神经网络(CNN),包括卷积层、池化层和全连接层的实现。我们还通过一个简单的图像分类案例,展示了如何使用这些层构建和训练CNN模型。优化算法:引入更高级的优化算法,如Adam、RMSprop等。数据增强。

2025-02-07 13:13:24 546

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.33 用NumPy进行梯度下降优化

用NumPy进行梯度下降优化梯度下降优化的基本概念使用NumPy实现梯度下降优化的方法梯度下降优化的实际应用案例代码实现:详细原理和源码注释总结与参考资料梯度下降的定义梯度下降的种类梯度下降的优缺点初始化权重和偏置前向传播计算损失反向传播更新权重和偏置线性回归逻辑回归神经网络线性回归的梯度下降逻辑回归的梯度下降神经网络的梯度下降1. 梯度下降优化的基本概念1.1 梯度下降的定义梯度下降(Gradient Descent)是一种优化算法,用于最小化一个函数。在机器学习和深度学习中,梯度下降主要用来最小化

2025-02-07 13:10:19 680

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.32 用NumPy实现简单的前馈神经网络

前馈神经网络(Feedforward Neural Network, FNN)是一种无反馈的多层神经网络,其中每一层的神经元只接收前一层的输入,并将输出传递给下一层。数据在神经网络中按照前向传播的方式流动,从输入层到输出层,不包含反馈路径。这种结构使其适用于解决多种监督学习问题,如分类和回归。本文详细介绍了如何使用NumPy实现一个简单的前馈神经网络,并通过XOR问题的应用案例展示了其工作原理。通过前向传播和反向传播,我们可以训练神经网络以学习数据中的复杂特征,并优化损失函数。

2025-02-07 11:59:42 666

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.31 用NumPy进行深度学习基础计算

神经网络是一种模拟人脑神经结构的计算模型,由大量的神经元组成。每个神经元接收输入信号,经过处理后生成输出信号。神经网络通过多层神经元的连接,能够对复杂的输入数据进行非线性变换,从而实现对数据的高效表示和分类。本文详细介绍了如何使用NumPy进行深度学习的基础计算,包括前向传播、反向传播、损失函数的计算和梯度下降算法。这篇文章包含了详细的原理介绍、代码示例、源码注释以及案例等。希望这对您有帮助。如果有任何问题请随私信或评论告诉我。

2025-02-07 11:07:51 616

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.30 用NumPy进行信号变换

信号变换是信号处理中的一项基本技术,通过将信号从时域变换到频域,可以更好地分析信号的特征和行为。本篇文章将从信号变换的基本概念入手,逐步介绍如何使用NumPy进行离散傅里叶变换(DFT)和快速傅里叶变换(FFT),并通过实际应用案例展示其重要性和应用场景。最后,我们将提供详细的代码实现和注释,帮助读者更好地理解和应用这项技术。信号变换是指将信号从一个域变换到另一个域的过程,最常见的变换是从时域变换到频域。时域信号表示信号随时间的变化,而频域信号表示信号的频率组成。

2025-02-07 10:54:56 539

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.29 用NumPy进行随机数生成与统计分析

随机数是数值序列中的一个元素,该序列中的每个元素都是不确定的,没有明显的规律可循。在计算机科学中,随机数通常通过算法生成,因此也被称为伪随机数。本文详细介绍了如何使用NumPy生成不同分布的随机数,并进行基本的统计分析。通过具体的代码实现和示例,读者可以更好地理解随机数生成和统计分析的基本原理和方法。此外,我们还探讨了随机数生成和统计分析在金融、机器学习和数据模拟中的实际应用案例,希望这些内容能够帮助读者在实际项目中应用这些技术。

2025-02-07 10:52:21 585

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.28 用NumPy进行质因数分解

质因数分解是将一个合数分解成若干个质数的乘积的过程。在计算机科学和数学中,质因数分解有着广泛的应用,如加密算法、数论研究等。本篇文章将从质因数分解的基本概念入手,逐步介绍如何使用NumPy实现质因数分解的方法,并通过实际应用案例展示其重要性和应用场景。最后,我们将提供详细的代码实现和注释,帮助读者更好地理解和应用这项技术。质因数分解(Prime Factorization)是指将一个正整数分解成若干个质数的乘积的过程。质数是只能被1和自身整除的自然数,如2、3、5、7等。

2025-02-07 10:45:42 505

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.27 用NumPy生成斐波那契数列

Fn0ifn01ifn1Fn−1Fn−2ifn1F(n) =Fn⎩⎨⎧​01Fn−1Fn−2​ifn0ifn1ifn1​斐波那契数列的前几项为:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …本文详细介绍了如何使用NumPy生成斐波那契数列,包括递归方法、迭代方法和矩阵方法。通过具体的代码实现和示例,读者可以更好地理解斐波那契数列的生成原理和不同方法的优缺点。

2025-02-07 10:42:20 430

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.26 用NumPy进行统计模型模拟

在本篇文章中,我们将探讨如何使用NumPy进行统计模型的模拟。统计模型是现代数据分析和科学研究中不可或缺的一部分,通过模拟这些模型,我们可以在有限的数据基础上进行更深入的分析和预测。我们将从统计模型的基本概念入手,逐步介绍如何使用NumPy进行蒙特卡洛模拟和Bootstrap等常见的统计模拟方法,并通过实际应用案例来展示这些方法的威力。最后,我们将提供详细的代码实现和注释,帮助读者更好地理解和应用这些技术。统计模型是用于描述数据生成过程的数学模型。

2025-02-07 10:25:10 325

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.25 用NumPy进行热力学模拟

热力学是研究热能和其他形式能量之间转换的科学。它在材料科学、工程学和物理学等领域有着广泛的应用。热力学模拟可以帮助我们理解和预测物质在不同条件下的热行为。本文详细介绍了如何使用NumPy进行热力学模拟,包括一维、二维和三维热传导方程的离散化和数值求解方法。通过具体的代码实现和可视化,读者可以更好地理解热传导的物理过程和数值模拟的步骤。希望本篇文章能够帮助你在热力学模拟方面取得进步,祝你学习顺利!

2025-02-07 10:23:06 709

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.24 用NumPy进行流体力学模拟

流体力学是研究流体(液体和气体)行为的科学,包括流体的运动、静止状态以及与固体和其他流体的相互作用。流体力学在航空航天、海洋工程、气象学、生物医学等领域有着广泛的应用。高效性:NumPy 提供了高效的数组操作,可以快速进行大规模的数值计算。灵活性:NumPy 的数组和函数可以方便地进行各种数值方法的实现,如迎风格式、有限差分和格子玻尔兹曼方法。可视化:结合 Matplotlib,可以轻松生成高质量的可视化结果,帮助理解模拟过程和结果。

2025-02-07 10:19:09 610

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.23 用NumPy进行电磁场模拟

电磁场是电场和磁场的总称,描述了电荷和电流在空间和时间中的相互作用。电磁场理论是现代物理学和工程学的基础之一,广泛应用于通信、雷达、材料科学等领域。电磁场模拟的基本概念介绍了电磁场的基本定义和重要性。详细解释了麦克斯韦方程组及其在电磁场模拟中的应用。讨论了电磁场的数值求解方法,特别是有限差分法(FDM)。使用NumPy进行电磁场模拟的方法解释了电磁场模拟的离散化过程,包括时间和空间步长的选择。介绍了如何使用有限差分法求解麦克斯韦方程组,提供了具体的公式和步骤。电磁场模拟的实际应用案例。

2025-02-06 23:15:01 678

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.22 用NumPy进行物理系统模拟

物理系统是指描述自然界中物理现象和规律的数学模型。这些模型通常由微分方程、代数方程和其他数学关系组成。物理系统的模拟是指通过数值计算方法,使用计算机程序来近似求解这些数学模型,从而预测系统的动态行为。准确性:NumPy提供高效、精确的数值计算功能,使得物理系统的模拟更加准确。效率:NumPy的数组操作非常高效,适合处理大规模数据。可视化:Matplotlib等绘图库可以方便地将模拟结果可视化,便于理解和分析。

2025-02-06 23:09:01 692

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.21 用NumPy进行物理模拟计算

质点运动方程的模拟牛顿第二定律:我们使用牛顿第二定律d2xdt2Fxtmdt2d2x​mFxt​进行了模拟。欧拉法:通过简单的一步近似,逐步更新位置和速度。龙格-库塔法(RK4):通过四步近似,提高了模拟的精度和稳定性。波动方程的模拟一维波动方程:使用有限差分法和欧拉法进行了模拟。二维波动方程:使用有限差分法进行了模拟,展示了波动在二维空间中的传播行为。实际应用案例弹簧-质量-阻尼系统:模拟了一个受弹簧力和阻尼力影响的质点的运动。简谐振子。

2025-02-06 22:40:37 342

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.20 用NumPy进行音频特征提取

3.20 用NumPy进行音频特征提取3.20.1 音频特征提取的基本概念3.20.2 使用NumPy进行音频特征提取的方法3.20.3 音频特征提取的实际应用案例3.20.4 代码实现:详细原理和源码注释3.20.5 参考文献和资料3.20.1 音频特征提取的基本概念音频特征提取是从音频信号中提取有用信息的过程。这些特征可以用于各种任务,如音频分类、语音识别、音乐推荐等。音频特征可以分为时域特征和频域特征两大类。时域特征:直接从时域信号中提取,常见的时域特征包括:频域特征:通过对信号进行频域转换(如傅

2025-02-06 22:21:18 464

原创 【深度分析】OpenAI放大招!ChatGPT搜索免费开放,前有OpenAI后有DeepSeek谷歌霸权要被终结?

ChatGPT搜索免费且无需注册开放是搜索引擎行业的一个重大变革,对搜索引擎市场格局、用户的搜索习惯以及竞争态势等多方面都产生了深远的影响。ChatGPT搜索与传统搜索引擎存在本质上的区别,无论是工作原理、搜索体验还是应用场景方面。无需注册即可使用ChatGPT搜索这一特性赋予了ChatGPT搜索很多特点和显著优势。OpenAI免费开放ChatGPT搜索对搜索引擎行业的影响。OpenAI免费开放ChatGPT搜索对搜索引擎行业的影响。网友对搜索引擎行业的这次变革持有不同的观点。搜索引擎行业未来发展趋势。

2025-02-06 18:10:28 473

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.18 用NumPy进行音频信号处理

音频信号是指表示声音波形的数字信号。这些数字信号通常以时间序列的形式存储,每个时间点的值表示声音波形的振幅。音频信号可以是单声道(Mono)或多声道(Stereo)的,其中多声道数据通常包含多个时间序列(每个声道一个)。本文详细介绍了如何使用NumPy进行音频信号处理,包括音频信号的基本概念、傅里叶变换、滤波和增强技术,以及实际应用案例。通过这些方法,我们可以有效地去除音频中的噪声、压缩音频文件、提取有用特征并进行语音识别等任务。希望本文能够帮助你更好地理解和应用音频信号处理技术。

2025-02-06 12:55:56 700

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.17 用NumPy实现音频滤波器

通过本文,我们详细介绍了如何使用 NumPy 实现音频滤波器,包括低通滤波器、高通滤波器和带通滤波器。我们不仅介绍了这些滤波器的基本概念,还通过具体的代码示例展示了它们的实现方法。这些滤波器在音频降噪、音频均衡和语音识别等实际应用中发挥着重要作用。未来,我们将继续探讨更多高级的音频处理技术,例如使用 Scipy 库进行更复杂的滤波器设计,以及如何结合机器学习进行更智能的音频处理。敬请期待!

2025-02-06 11:12:42 566

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.16 用NumPy处理声音数据

声音数据是表示声音波形的数字信号。这些数字信号通常是以时间序列的形式存储,每个时间点的值表示声音波形的振幅。声音数据可以是单声道(Mono)或多声道(Stereo)的,其中多声道数据通常包含多个时间序列(每个声道一个)。在本篇文章中,我们详细介绍了如何使用NumPy处理声音数据,包括声音数据的基本概念、读取和写入声音数据、声音信号的可视化、简单处理(如裁剪和拼接)、滤波和特征提取。通过这些方法,我们可以深入理解和处理声音数据,为后续的音频分析和机器学习任务打下坚实的基础。

2025-02-05 21:20:54 666

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.15 用NumPy进行特征工程

特征工程是机器学习中不可或缺的一部分,通过合理地提取和转换特征,可以显著提升模型的性能。NumPy 作为一个强大的数值计算库,提供了多种方法来帮助我们进行特征工程的处理。本文通过具体的例子和代码示例,详细介绍了如何使用 NumPy 进行特征提取和特征转换,希望对读者有所帮助。在未来的文章中,我们将探讨更多高级的特征工程技术和具体的实践案例,包括使用 Pandas、Scikit-learn 等库进行特征工程的处理。敬请期待!

2025-02-05 21:14:03 889

原创 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】3.14 用NumPy进行数据清洗

数据清洗(Data Cleaning)是指对数据进行预处理,以确保数据的质量和一致性。通过数据清洗,我们可以移除或修复数据中的错误、不一致和缺失值,从而使数据更适合用于数据分析和机器学习任务。在本篇文章中,我们详细介绍了如何使用NumPy进行数据清洗,包括缺失值处理、异常值处理、重复数据处理和数据类型转换。通过这些方法,我们可以有效地提高数据的质量,使数据更适合作为后续数据分析和机器学习任务的输入。参考资料名称链接NumPy官方文档Pandas官方文档Matplotlib官方文档。

2025-02-05 20:57:40 914

亲测有效 抽奖程序4.0 抽奖过程随机展示动画 一次抽奖多人正确展示结果

【功能清单】 核心功能: - 批量导入TXT/CSV文件(支持多编码) - 动态抽奖动画(2秒随机闪烁+聚焦效果) - 多人中奖记录合并显示(逗号分隔) - 中奖权重设置(CSV第二列) - 历史记录导出(单条记录包含所有中奖者) 交互增强: - 深色/浅色双主题切换 - MP3音效反馈(需ding.mp3文件) - 树形表格展示历史记录 - 实时人数统计显示 高级设置: - 排除已中奖者模式 - 中奖人数调节(1-10人) - 时间格式自定义(3种预设) - 音效开关控制 异常处理: - 智能编码回退机制 - 文件错误精确定位 - 操作防呆设计

2025-01-23

亲测有效 抽奖程序3.0 多格式导入(TXT/CSV) 权重抽奖 重复抽奖/去重模式切换 中奖人数灵活配置 音效

核心功能** 1. 智能文件管理 - 多格式导入(TXT/CSV) - 批量文件处理(自动合并名单) - 智能编码识别(UTF-8/GBK/GB18030等) - 历史记录导出(CSV/TXT) 2. 高级抽奖规则 - 中奖者排除机制 - 权重抽奖(CSV导入权重值) - 多人同时中奖(1-10人可调) - 重复抽奖/去重模式切换 3. 交互增强 - 实时音效反馈(MP3支持) - 深色/浅色主题切换 - 动态加载动画 - 树形表格历史记录(支持排序) #### **特色功能** 4. 定制化设置 - 时间格式自定义(3种预设+自定义) - 中奖人数灵活配置 - 音效开关控制 5. 异常处理 - 文件错误精准定位 - 智能编码回退机制 - 操作防呆设计(未导入名单禁用抽奖)

2025-01-23

亲测有效 抽奖程序2.0 支持.txt文件导入 自动识别多种编码格式 实时显示导入人数 重复抽奖不限制次数 永久保留记录

功能全景图 功能模块 具体能力 文件管理 - 支持.txt文件导入 - 自动识别多种编码格式 - 实时显示导入人数 抽奖核心 - 随机选取参与者 - 重复抽奖不限制次数 - 实时显示抽奖结果 历史记录 - 时间戳精确到秒 - 永久保留记录(直到程序关闭) - 最新记录置顶显示 用户交互 - 友好的错误弹窗 - 操作成功反馈 - 界面元素状态联动 扩展能力 - 可通过修改encodings列表支持更多编码 - 布局易于调整尺寸和样式 使用流程 导入名单 点击导入按钮 → 选择.txt文件 → 自动识别编码 → 显示人数 执行抽奖 点击抽奖按钮 → 随机选取 → 显示结果 → 记录历史 查看历史 滚动列表框 → 查看完整记录 → 最新记录始终置顶 错误处理 文件读取失败 → 弹窗提示原因 → 建议解决方案

2025-01-23

亲测有效 抽奖程序1.0 可以直接运行

抽奖程序功能描述: 1. 有一个输入框,用户可以输入参与抽奖的人员名单,每输入一个名字后按下回车键或点击添加按钮。 2. 有一个按钮,点击后进行抽奖。 3. 抽奖的结果展示在屏幕上。 4. **重新抽奖**:点击“重新抽奖”按钮后,会清空当前的中奖结果,并重新启用“开始抽奖”按钮。 5. **显示抽奖记录**:每次抽奖后,中奖者的名字和抽奖时间都会被记录在 `history` 列表中,并显示在 `Text` 组件中。

2025-01-23

【机器学习实战高阶】基于深度学习的图像分割 源代码与数据集

【机器学习实战高阶】基于深度学习的图像分割 源代码与数据集

2025-01-20

基于深度学习车牌识别 自动识别车牌号码 Automatic License Number Plate Detection and Recognition

基于深度学习车牌识别 自动识别车牌号码 Automatic License Number Plate Detection and Recognition

2025-01-20

【机器学习实战中阶】书籍推荐系统 数据集 archive

【机器学习实战中阶】书籍推荐系统 数据集 archive

2025-01-20

使用Python和OpenCV进行手语识别 源代码 sign-language-recognition-project

使用Python和OpenCV进行手语识别 源代码 sign-language-recognition-project 手语识别与机器学习 项目构思精要:本项目旨在帮助聋哑人,通过创建一个能够识别手语的检测器,促进他们与他人之间的交流。此手语识别系统利用机器学习技术,为聋哑人群体提供了一个宝贵的沟通工具。

2025-01-20

【机器学习实战中阶】基于机器学习的人格预测,测试你的人格

【机器学习实战中阶】基于机器学习的人格预测,测试你的人格

2025-01-20

价格预测器 源代码与数据集

这段代码的目的是读取一个包含价格的数据集,并对其进行基本的信息查看。然后,基于数据集中的加权价格绘制折线图,以便直观地查看价格趋势。接下来,代码将加权价格中的 0 值替换为 NaN,并使用前向填充方法(ffill)来填充这些 NaN 值,以避免数据中的 0 值对模型训练产生影响。最后,再次绘制折线图,显示填充后的数据,确保数据处理的效果。 1. **读取数据集**: - 使用 `pd.read_csv` 函数读取 CSV 文件,并将 "Date" 列设置为索引。 - 使用 `data.info()` 查看数据集的基本信息。 - 使用 `data.head()` 和 `data.tail()` 分别显示数据集的前 5 行和最后 5 行。 2. **绘制初始折线图**: - 使用 Plotly 的 `go.Scatter` 创建一个折线图数据对象,x 轴为日期,y 轴为加权价格。 - 使用 `py.iplot` 在 Jupyter Notebook 中显示折线图。 3. **数据处理**: - 使用 `replace` 方法将加权价格中的 0

2025-01-19

基于机器学习智能文本摘要 深度学习 注意力机制源码 自然语言处理 源代码与数据集

### 背景介绍 该数据集由来自亚马逊的精品食品评论组成,涵盖了超过10年的数据,包含截至2012年10月的所有约500,000条评论。这些评论不仅包含了产品和用户信息、评分,还有纯文本形式的评论内容。值得注意的是,此数据集还收录了亚马逊所有其他类别的商品评论。 ### 内容 - **Reviews.csv**:从名为`Reviews`的SQLite表中提取。 - **database.sqlite**:包含一个名为`Reviews`的表,即上述CSV文件的数据源。 ### 数据详情 - 时间范围:1999年10月至2012年10月 - 总评论数:568,454条 - 用户总数:256,059位 - 涉及产品数:74,258种 - 审评次数超过50次的用户数:260位

2025-01-18

泰坦尼克号生存预测 数据集 titanic

泰坦尼克号生存预测项目指南 1. 数据理解 数据集构成: 训练集(train.csv):包含乘客的特征和生存情况。 测试集(test.csv):包含乘客的特征,但没有生存情况,需要预测。 示例提交文件(gender_submission.csv):假设所有女性都存活的预测结果。 变量定义: survival:生存情况,0表示未生存,1表示生存。 pclass:票类,1表示上等,2表示中等,3表示下等。 sex:性别。 age:年龄,小于1岁的小数表示。 sibsp:船上兄弟姐妹/配偶数量。 parch:船上父母/子女数量。 ticket:票号。 fare:票价。 cabin:舱位号。 embarked:登船港口,C表示瑟堡,Q表示皇后镇,S表示南安普顿。 2. 数据预处理 探索性数据分析(EDA): 使用Pandas和Matplotlib库加载数据,检查数据结构和缺失值。 分析各特征与生存率之间的关系,例如性别、年龄、舱位对生存的影响。 缺失值处理: 对age列的缺失值,可以使用均值或中位数填充。 cabin列缺失值较多,可以考虑创建一个新的二元

2025-01-18

使用LSTM机器学习预测股票价格 源代码与数据集

### 股票价格预测项目 在这个机器学习项目中,我们将开发一个基于神经网络的股票预测模型,用于预测股票收益。 学习如何开发股票价格预测模型,并构建一个用于股票分析的交互式仪表板。我们使用 LSTM 模型实现股票市场预测,并使用 Plotly Dash Python 框架构建仪表板。 **类别**:机器学习、深度学习 **编程语言**:Python **工具与库**:Plotly Dash、LSTM **IDE**:Jupyter **前端**:Plotly Dash(用于可视化) **后端**:无 **先决条件**:Python、机器学习、深度学习、神经网络 **目标受众**:教育、开发人员、数据工程师、数据科学家 ### 股票价格数据 该数据集包含关于塔塔全球饮料有限公司(Tata Global Beverages Limited)的股票价格记录。数据集中还包含按日期排列的股票价格,包括开盘价、收盘价、最高价和最低价,以及当天的交易量和成交额。 对于想要尝试数据可视化、数据分析以及多种形式的数据处理技术的人来说,这是一个极好的数

2025-01-18

基于深度学习的乳腺癌分类 源代码与数据集

**背景** 浸润性导管癌(IDC)是所有乳腺癌中最常见的亚型。为了对整个组织样本进行侵袭性分级,病理学家通常专注于包含 IDC 的区域。因此,自动侵袭性分级的常见预处理步骤之一是划定整个组织切片中 IDC 的确切区域。 **内容** 原始数据集包含 162 张乳腺癌(BCa)标本的整个组织切片图像,扫描倍率为 40 倍。从中提取了 277,524 个大小为 50 x 50 的 patches(198,738 个 IDC 阴性,78,786 个 IDC 阳性)。每个 patch 的文件名格式为:u_xX_yY_classC.png —— 例如 10253_idx5_x1351_y1101_class0.png。其中,u 是患者 ID(10253_idx5),X 是该 patch 裁剪位置的 x 坐标,Y 是该 patch 裁剪位置的 y 坐标,C 表示类别,0 为非 IDC,1 为 IDC。

2025-01-18

使用librosa进行语音情感识别 数据集 speech-emotion-recognition-ravdess-data

在这个 Python 小型项目中,我们将使用 RAVDESS 数据集;这是 Ryerson 情感语音和歌曲音频-视频数据库,可以免费下载。该数据集包含 7356 个文件,由 247 人进行了 10 次情感有效性、强度和真实性的评分。整个数据集来自 24 位演员,大小为 24.8GB,但我们已经降低了所有文件的采样率。

2025-01-18

使用Pandas和OpenCV进行颜色检测 源代码与数据集

使用Pandas和OpenCV进行颜色检测 源代码与数据集 颜色由三种原色组成:红色、绿色和蓝色。在计算机中,我们将每种颜色的值定义在 0 到 255 的范围内。那么,我们可以用多少种方式来定义一种颜色呢?答案是 256256256 = 16,581,375。也就是说,大约有 1650 万种不同的方式来表示一种颜色。在我们的数据集中,我们需要将每种颜色的值与其对应的名称进行映射。但不用担心,我们不需要映射所有值。我们将使用一个包含 RGB 值及其对应名称的数据集。

2025-01-18

利用XGBoost检测帕金森病 数据合集

利用XGBoost检测帕金森病 数据合集

2025-01-18

识别假新闻 数据集 news.zip

识别假新闻 数据集 news

2025-01-18

使用Python进行MNIST手写数字识别 源代码与数据集 Python-Project-Handwritten-digit-recognizer

使用Python进行MNIST手写数字识别 源代码与数据集 Python-Project-Handwritten-digit-recognizer MNIST 数据集 这可能是机器学习和深度学习爱好者中最受欢迎的数据集之一。MNIST 数据集包含 60,000 张手写数字的训练图像(从 0 到 9)和 10,000 张测试图像。因此,MNIST 数据集共有 10 个不同的类别。手写数字图像以 28×28 的矩阵表示,其中每个单元格包含灰度像素值。

2025-01-18

使用深度学习创建您自己的表情符号 源代码与数据集 FER-2013 训练集:28,709张图像 测试集:3,589张图像 七种情感类别

FER-2013(Facial Expression Recognition 2013)是一个用于面部表情识别的经典数据集,旨在通过图像数据训练模型,使其能够识别人类面部表情所表达的情感。该数据集广泛应用于计算机视觉和情感分析领域,特别是在深度学习模型的训练和评估中。 **数据集特点** 1. **图像格式**: - 图像为48x48像素的灰度图像,每个像素的灰度值范围为0到255。 - 图像已经过预处理,确保面部居中并占据图像的主要部分。 2. **情感类别**: - 数据集将面部表情分为七种情感类别: 0 = 愤怒(Angry) 1 = 厌恶(Disgust) 2 = 恐惧(Fear) 3 = 快乐(Happy) 4 = 悲伤(Sad) 5 = 惊讶(Surprise) 6 = 中性(Neutral) 3. **数据集规模**: - 训练集:28,709张图像 - 测试集:3,589张图像

2025-01-18

鸢尾花分类项目 源代码与数据集 iris-flower-classification-project

鸢尾花分类项目 源代码与数据集 iris-flower-classification-project

2025-01-18

使用CNN和LSTM构建图像描述生成器 源代码和部分数据

使用CNN和LSTM构建图像描述生成器 源代码和部分数据

2025-01-18

使用CNN和Keras进行交通标志识别,准确率达到95% 源代码和数据集 Python-Project-Traffic-Sign-Classification

使用CNN和Keras进行交通标志识别,准确率达到95% 源代码和数据集 Python-Project-Traffic-Sign-Classification

2025-01-18

使用OpenCV和Keras的驾驶员疲劳检测系统 代码 Drowsiness detection

使用OpenCV和Keras的驾驶员疲劳检测系统 代码 Drowsiness detection

2025-01-17

使用OpenCV和Keras的驾驶员疲劳检测系统 数据集 yawn-eye-dataset-new

使用OpenCV和Keras的驾驶员疲劳检测系统 数据集 yawn_eye_dataset_new

2025-01-17

【机器学习实战入门】学习使用NLTK和Keras构建你的第一个聊天机器人 chatbot-python-project-data-codes

【机器学习实战入门】学习使用NLTK和Keras构建你的第一个聊天机器人 chatbot-python-project-data-codes

2025-01-17

【机器学习实战入门】有趣的Python项目:使用OpenCV进行性别和年龄检测-配套代码图片资料等gad

【机器学习实战入门】有趣的Python项目:使用OpenCV进行性别和年龄检测-配套代码图片资料等gad

2025-01-17

青少年科技创新大赛改革:聚焦15至24岁参赛者的制度优化与创新能力培养

竞赛报告,调研报告:2025全国青少年科技创新大全国青少年科技创新大赛调研报告 一、大赛概述 全国青少年科技创新大赛(以下简称“大赛”)始创于1982年,由中国科学技术协会、国家自然科学基金委、共青团中央、全国妇联等多家单位联合主办。其主要目标是发掘和培养青少年科技创新的后备人才。随着科技和教育的发展,大赛的形式和内容不断演进,以适应时代需求。 二、《全国青少年科技创新大赛实施办法(试行)》的主要改革内容 2025年1月,中国科协办公厅发布了《全国青少年科技创新大赛实施办法(试行)》,对大赛的参赛对象、组织方式、赛制规则等方面进行了重大改革。 1. 参赛对象的调整 新的《实施办法》明确规定,大赛的参赛对象为15至24岁校内外青少年,不再接受低龄段少年儿童和科技辅导员参赛。此举旨在防止低龄段参赛者的舞弊现象,确保比赛的公平性,并更好地激发和保护青少年的创新热情和科学探究精神。 2. 组织方式的改革 在组织方式上,大赛将广泛汇聚全国学会和地方科协的优质赛事资源,打造青少年科技竞赛矩阵。通过这种方式,不仅提升赛事的专业性和权威性,也能更好地推动科技教育资源的共享与协同。 3. 赛制规

2025-01-17

2025年世界大学生超级计算机竞赛:赛制解析、技术挑战及全球影响力分析

竞赛报告 2025年 世界大学生超级计算机竞赛 详细实用调研报告 2025年世界大学生超级计算机竞赛(ASC25) 2025年1月15日,2025年世界大学生超级计算机竞赛在北京正式启动。这次比赛吸引了来自全球超过300支高校队伍报名参加,采用了“预赛+决赛”的双赛制形式。 竞赛概况 启动仪式 日期:2025年1月15日 地点:北京 参会人员:高性能计算和人工智能领域的院士、专家、参赛师生代表等。 参赛情况 报名队伍:全球超过300支高校队伍。 赛制:预赛+决赛双赛制 预赛:参赛队伍需完成指定任务,并提交详细的集群设计和应用优化方案。通过预赛评估选拔的队伍将晋级决赛。 决赛:将在2025年5月10日至14日在青海大学举行。 赛题方向 主要包括蛋白质结构预测等领域的前沿科学和人工智能成果。 竞赛目的 推动超算青年人才交流和培养。 通过科技竞赛和前沿应用相结合,促进创新意识和科技能力的培养。 重要意义 此次竞赛不仅是对参赛学生计算能力的一次检验,也是促进国际间学术交流和技术合作的重要契机。

2025-01-17

pyspark,hivesql,sql,百亿级数据,数据溯源,拉链表,全量拉链表生成,拉链表增量数据生成

pyspark,hivesql,sql,百亿级数据,数据溯源,拉链表,全量拉链表生成,拉链表增量数据生成

2025-01-17

音乐播放器源码+可执行程序+测试音乐+截图 快速实现一个音乐播放器,功能如下: 1,播放本地音乐文件 2,有播放、暂停、下一曲、上一曲功能,显示歌曲列表信息 3,显示播放时间进度 4,拖

音乐播放器源码+可执行程序+测试音乐+截图。快速实现一个音乐播放器,功能如下: 1,播放本地音乐文件。 2,有播放、暂停、下一曲、上一曲功能,显示歌曲列表信息。 3,显示播放时间进度。 4,拖

2025-01-07

icmp,tcpping工具源码 源码和exe工具,离线运行

icmp,tcpping工具源码。源码和exe工具,离线运行。

2024-08-29

基于RASA构建聊天机器人.pdf FAQ问答机器人.pdf

基于RASA构建聊天机器人.pdf FAQ问答机器人.pdf

2023-04-03

量化交易最佳论文 量化交易技术

tradingmen-5 year Expected Returns 2020-2024 Escaping the Hall of Mirrors.pdf tradingmen-2019 ESG Trends to Watch.pdf tradingmen-Capturing the Opportunity of Constraints.pdf tradingmen-ETFs in Insurance General Accounts.pdf tradingmen-Factor Momentum Everywhere.pdf tradingmen-Future-Proofing Your Asset Allocation in the Age of Mega Trends.pdf tradingmen-Guide to the Markets - Asia version.pdf tradingmen-Investment Professional of the Future.pdf tradingmen-Value Vs Growth the New BuBBle.pdf

2023-03-31

中国期货市场微观特征因子及微观交易策略-以股指期货为例(龚博士).mp3 中国期货市场微观特征因子及微观交易策略-以股指期货为例

中国期货市场微观特征因子及微观交易策略-以股指期货为例(龚博士).mp3 中国期货市场微观特征因子及微观交易策略-以股指期货为例(龚博士).pdf

2023-03-30

从vc视角看餐饮PPT.pdf vc角度看餐饮.WAV

从vc视角看餐饮PPT.pdf vc角度看餐饮.WAV

2023-03-30

交易门香港线下回顾:22年港股投资者查尔斯的实战分享

交易门香港线下回顾:22年港股投资者查尔斯的实战分享

2023-03-30

陈韵博士:量化投资动态配置

陈韵博士:量化投资动态配置.mp3 陈韵博士:量化投资动态配置.pdf

2023-03-30

大咖深度分享 CTA策略主要研究方式及发展方向

大咖深度分享 CTA策略主要研究方式及发展方向 大咖深度分享 CTA策略主要研究方式及发展方向 大咖深度分享 CTA策略主要研究方式及发展方向 大咖深度分享 CTA策略主要研究方式及发展方向 大咖深度分享 CTA策略主要研究方式及发展方向 大咖深度分享 CTA策略主要研究方式及发展方向 大咖深度分享 CTA策略主要研究方式及发展方向 大咖深度分享 CTA策略主要研究方式及发展方向 大咖深度分享 CTA策略主要研究方式及发展方向 大咖深度分享 CTA策略主要研究方式及发展方向 大咖深度分享 CTA策略主要研究方式及发展方向 大咖深度分享 CTA策略主要研究方式及发展方向 大咖深度分享 CTA策略主要研究方式及发展方向 大咖深度分享 CTA策略主要研究方式及发展方向 大咖深度分享 CTA策略主要研究方式及发展方向 大咖深度分享 CTA策略主要研究方式及发展方向 大咖深度分享 CTA策略主要研究方式及发展方向

2023-03-30

cocos2d-x实战项目

cocos2d-x实战项目 01.cocos2d-x原理及环境配置.rar 03.cocostudio使用方法及UI控制.rar 04.XML文件读取与骨骼动画.rarcocos2d-x实战项目 01.cocos2d-x原理及环境配置.rar 03.cocostudio使用方法及UI控制.rar 04.XML文件读取与骨骼动画.rarcocos2d-x实战项目 01.cocos2d-x原理及环境配置.rar 03.cocostudio使用方法及UI控制.rar 04.XML文件读取与骨骼动画.rarcocos2d-x实战项目 01.cocos2d-x原理及环境配置.rar 03.cocostudio使用方法及UI控制.rar 04.XML文件读取与骨骼动画.rarcocos2d-x实战项目 01.cocos2d-x原理及环境配置.rar 03.cocostudio使用方法及UI控制.rar 04.XML文件读取与骨骼动画.rarcocos2d-x实战项目 01.cocos2d-x原理及环境配置.rar 03.cocostudio使用方法及UI控制.rar 04.XML文件读取与骨骼动画

2022-09-04

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除