产生数
Description
给出一个整数 n(n<10^30) 和 k 个变换规则(k<=15)。
规则:
一位数可变换成另一个一位数:
规则的右部不能为零。
例如:n=234。有规则(k=2):
2-> 5
3-> 6
上面的整数 234 经过变换后可能产生出的整数为(包括原数):
234
534
264
564
共 4 种不同的产生数
问题:
给出一个整数 n 和 k 个规则。
求出:
经过任意次的变换(0次或多次),能产生出多少个不同整数。
仅要求输出个数。
Input
n k
x1 y1
x2 y2
… …
xn yn
Output
一个整数(满足条件的个数):
Sample Input
234 2
2 5
3 6
Sample Output
4
分析:这题是一道Floyed的变形,如果没有变边权:
把相连的两点间的距离设为dis[i][j]=true,不相连的两点设为dis[i][j]=false
伪代码:
For (k <-1 to n;)
For (i <-1 to n;)
For (j <-1 to n;)
dis[i][j] = dis[i][j] || (dis[i][k] && dis[k][j])