2002年分区联赛普级组之三 产生数(最短路)

给定一个整数n和k个变换规则,每个规则允许一位数转换为另一位数,求所有可能通过规则变换产生的不同整数个数。这是一道基于Floyd算法的问题,需要考虑高精度计算和乘法原理。
摘要由CSDN通过智能技术生成

产生数

Description

给出一个整数 n(n<10^30) 和 k 个变换规则(k<=15)。
  规则:
   一位数可变换成另一个一位数:
   规则的右部不能为零。
  例如:n=234。有规则(k=2):
    2-> 5
    3-> 6
  上面的整数 234 经过变换后可能产生出的整数为(包括原数):
   234
   534
   264
   564
  共 4 种不同的产生数
问题:
  给出一个整数 n 和 k 个规则。
求出:
  经过任意次的变换(0次或多次),能产生出多少个不同整数。
  仅要求输出个数。

Input

n k
x1 y1
x2 y2
… …
xn yn

Output

一个整数(满足条件的个数):

Sample Input

234 2
2 5
3 6

Sample Output

4

分析:这题是一道Floyed的变形,如果没有变边权:
把相连的两点间的距离设为dis[i][j]=true,不相连的两点设为dis[i][j]=false

伪代码:

For (k <-1 to n;)
  For (i <-1 to n;)
    For (j <-1 to n;)
    dis[i][j] = dis[i][j] || (dis[i][k] && dis[k][j])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值