一、差分数组的定义及用途
注意:差分数组只能解决先区间修改再查询的题。
1.定义:
对于已知有n个元素的离线数列d,我们可以建立记录它每项与前一项差值的差分数组f:显然,f[1]=d[1]-0=d[1];对于整数i∈[2,n],我们让f[i]=d[i]-d[i-1]。
2.简单性质:
(1)计算数列各项的值:观察d[2]=f[1]+f[2]=d[1]+d[2]-d[1]=d[2]可知,数列第i项的值是可以用差分数组的前i项的和计算的,即d[i]=f[i]的前缀和。
(2)计算数列每一项的前缀和:第i项的前缀和即为数列前i项的和,那么推导可知
即可用差分数组求出数列前缀和;
3.用途:
(1)快速处理区间加减操作:
假如现在对数列中区间[L,R]上的数加上x,我们通过性质(1)知道,第一个受影响的差分数组中的元素为f[L],即令f[L]+=x,那么后面数列元素在计算过程中都会加上x;最后一个受影响的差分数组中的元素为f[R],所以令f[R+1]-=x,即可保证不会影响到R以后数列元素的计算。这样我们不必对区间内每一个数进行处理,只需处理两个差分后的数即可;
(2)询问区间和问题:
由性质(2)我们可以计算出数列各项的前缀和数组sum各项的值;那么显然,区间[L,R]的和即为ans=sum[R]-sum[L-1];
设a数组为初始的序列,我们要在这个数祖上进行一系列的区间修改。
设d数组为差分数组,定义差分数组的第i个值为d[i]=a[i]-a[i-1]。
那么我们得知a[i]=d[1]+d[2]+d[3]+d[4]+…+d[i],所以如果要求某个区间段内的和,我们可以先将差分数组的前缀和求出来。再根据x和y进行累加。
如果现在我们要将(x,y)区间内的数都加c。
那么根据d[i]=a[i]-a[i-1]得知,当a序列更新为之后,只有d[x]和d[y+1]变了。
d[x]+=c;
d[y+1]-=c;
所以每次更新我们都可以进行这样的操作。
最后查询时,我们先将差分数组的前缀和求出来,然后输出就可以了。
这样,复杂度为O(n)。
例题: