2021-08-10校网比赛B题

本文介绍了一种解决最小生成树问题的方法——Kruskal算法,通过建立超级源点并进行边的排序,逐步连接节点,直至形成一棵最小生成树。在实现过程中需要注意避免超时和正确存储边。代码示例展示了如何应用Kruskal算法来找到最小的雇佣和交流费用总和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述

思路:
建立一个超级源点S,
S向所有人连边,边权为雇佣费用
人与人之间存在连边,即交流费用
求最小生成树即可
注意几个细节:

  1. 对于最小生成树的边存储只能存一半,否则会超时。
  2. 千万不要打快读,我也不知道为什么比赛几个打快读的都炸掉了
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

//typedef long long int;

const int N = 1e6 + 10;
const int M = 1e3 + 10;
struct node {int u, v, w;} e[N];
int n, cnt, ans, t, f[N], a, tot;

bool cmp(node a, node b) {return a.w < b.w;}

int find(int x) {return (x == f[x]) ? x : (f[x] = find(f[x]));}

void unionn(int x, int y, int w) {f[x] = y; ans += w; tot++;}

int main()
{
	scanf("%d", &n);
	for(int i = 1; i <= n; i++)
	 for(int j = 1; j <= n; j++)
	 {
	 	scanf("%d", &t);
		if(i < j) e[++cnt] = (node){i, j, t};	
	 }
	for(int i = 1; i <= n; i++) 
		scanf("%d", &a), f[i] = i, e[++cnt] = (node){0, i, a};
	sort(e + 1, e + 1 + cnt, cmp);
	for(int i = 1; i <= cnt; i++)
	{
		int u = e[i].u, v = e[i].v;
		int fx = find(u), fy = find(v);
		if(fx != fy) unionn(fx, fy, e[i].w);
		if(tot == n) break;
	}
	printf("%d\n", ans);
	return 0;
} 
内容概要:本文介绍了一种利用元启发式算法(如粒子群优化,PSO)优化线性二次调节器(LQR)控制器加权矩阵的方法,专门针对复杂的四级倒立摆系统。传统的LQR控制器设计中,加权矩阵Q的选择往往依赖于经验和试错,而这种方法难以应对高维度非线性系统的复杂性。文中详细描述了如何将控制器参数优化问转化为多维空间搜索问,并通过MATLAB代码展示了具体实施步骤。关键点包括:构建非线性系统的动力学模型、设计适应度函数、采用对数缩放技术避免局部最优、以及通过实验验证优化效果。结果显示,相比传统方法,PSO优化后的LQR控制器不仅提高了稳定性,还显著减少了最大控制力,同时缩短了稳定时间。 适合人群:控制系统研究人员、自动化工程专业学生、从事机器人控制或高级控制算法开发的技术人员。 使用场景及目标:适用于需要精确控制高度动态和不确定性的机械系统,特别是在处理多自由度、强耦合特性的情况下。目标是通过引入智能化的参数寻优手段,改善现有控制策略的效果,降低人为干预的需求,提高系统的鲁棒性和性能。 其他说明:文章强调了在实际应用中应注意的问,如避免过拟合、考虑硬件限制等,并提出了未来研究方向,例如探索非对角Q矩阵的可能性。此外,还分享了一些实践经验,如如何处理高频抖动现象,以及如何结合不同类型的元启发式算法以获得更好的优化结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值