【读书笔记->统计学】05-02 “概率”的整体影响-随机变量的线性变换、独立观测值概念简介

线性变换

书中给了一个新的情境:在原来的基础上,老虎机的奖励翻5倍,但是拉一次杆的赌本从1美元变成了2美元。

下面是新的概率分布:

y-223487398
P(Y=y)0.9770.0080.0080.0060.001

之前的收益分布的期望和方差分别是“-0.77”和“2.6971”,那么现在呢?
E ( Y ) = ( − 2 ) ∗ 0.977 + 23 ∗ 0.008 + . . . + 98 ∗ 0.001 = − 0.85 V a r ( Y ) = ∑ ( Y − μ ) 2 = ( − 2 + 0.85 ) 2 ∗ 0.977 + . . . + ( 98 + 0.850 ) 2 ∗ 0.001 = 67.4275 E(Y) = (-2)*0.977+23*0.008+...+98*0.001 \\ =-0.85 \\ Var(Y)= \sum(Y-\mu)^2 \\ =(-2+0.85)^2*0.977 + ... + (98+0.850)^2*0.001 \\ =67.4275 E(Y)=(2)0.977+230.008+...+980.001=0.85Var(Y)=(Yμ)2=(2+0.85)20.977+...+(98+0.850)20.001=67.4275
期望稍微下降了一点,因此从长期来看,我们每届可望赔0.85美元;方差增大,这表示从长期看来,我们有可能在这台老虎机上赔更多的钱,但确定性更小。

E(X)与E(Y)之间存在线性关系

新旧收益其实相互关联,每一局的赌本上涨到2美元,赢金则是原来的5倍,它们的期望和方差也存在关系。我们可以看下面:

在这里插入图片描述

在这里插入图片描述

我们可以将以上公式推广至任意随机变量,若随机变量为X:
E ( a X + b ) = a E ( x ) + b V a r ( a X + b ) = a 2 V a r ( X ) E(aX+b) = aE(x)+b \\ Var(aX+b) = a^2 Var(X) E(aX+b)=aE(x)+bVar(aX+b)=a2Var(X)
这就是所谓的线性变换,因为X发生的是线性变化—即基础概率保持不变,当数值变为新值,其形式为:aX+b。


其实也很好理解,假设X, Y = a X + b Y=aX+b Y=aX+b,a和b是常量。每个 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn为X具体的取值,自然地,对于每个 y 1 , y 2 , . . . , y n y_1,y_2,...,y_n y1,y2,...,yn y i = a x i + b y_i=ax_i+b yi=axi+b

概率分布如下图所示:

x x 1 x_1 x1 x 2 x_2 x2 x n x_n xn
y y 1 y_1 y1 y 2 y_2 y2 y n y_n yn
P(X=x) P ( x 1 ) P(x_1) P(x1) P ( x 2 ) P(x_2) P(x2) P ( x n ) P(x_n) P(xn)
P(Y=y) P ( x 1 ) P(x_1) P(x1) P ( x 1 ) P(x_1) P(x1) P ( x 1 ) P(x_1) P(x1)

X的期望为 E ( X ) = ∑ x P ( X = x ) E(X)=\sum xP(X=x) E(X)=xP(X=x)。则,
E ( Y ) = E ( a X + b ) = ∑ ( a x + b ) ∗ P ( x ) = ∑ a x ∗ P ( x ) + ∑ b P ( x ) = a [ x 1 P ( x 1 ) + . . . x n P ( x n ) ] + b ( P ( x 1 ) + . . . + P ( x n ) ) = a ∑ x P ( x ) + b = a E ( x ) + b E(Y)=E(aX+b) \\ =\sum (ax+b)*P(x) \\ =\sum ax*P(x) + \sum bP(x) \\ =a[x_1P(x_1)+...x_nP(x_n)] + b(P(x_1)+...+P(x_n)) \\ =a\sum xP(x) + b \\ =aE(x)+b E(Y)=E(aX+b)=(ax+b)P(x)=axP(x)+bP(x)=a[x1P(x1)+...xnP(xn)]+b(P(x1)+...+P(xn))=axP(x)+b=aE(x)+b
X的方差为 V a r ( X ) = E ( X − E ( x ) ) 2 = ∑ ( x − E ( x ) ) 2 P ( X = x ) Var(X) = E(X-E(x))^2= \sum(x-E(x))^2P(X=x) Var(X)=E(XE(x))2=(xE(x))2P(X=x)。则,
V a r ( Y ) = E ( Y − E ( Y ) ) 2 = ∑ ( y − E ( Y ) ) 2 P ( Y = y ) = ∑ [ a x + b − ( a E ( x ) + b ) ] 2 P ( X = x ) = ∑ [ a ( x − E ( x ) ) ] 2 P ( X = x ) = ∑ a 2 ∗ ( x − E ( x ) ) 2 P ( X = x ) = a 2 ∑ ( x − E ( x ) ) 2 P ( X = x ) = a 2 V a r ( x ) Var(Y) = E(Y-E(Y))^2 \\ = \sum(y-E(Y))^2P(Y=y) \\ = \sum[ax+b-(aE(x)+b)]^2P(X=x) \\ = \sum[a(x-E(x))]^2P(X=x) \\ = \sum a^2*(x-E(x))^2 P(X=x) \\ = a^2 \sum (x-E(x))^2P(X=x) \\ = a^2 Var(x) Var(Y)=E(YE(Y))2=(yE(Y))2P(Y=y)=[ax+b(aE(x)+b)]2P(X=x)=[a(xE(x))]2P(X=x)=a2(xE(x))2P(X=x)=a2(xE(x))2P(X=x)=a2Var(x)


问:方差中的b哪里去了?

答:在概率分布中增加了一个常数仅对期望有影响,对整个方差没有影响。在变量中增加一个常数不过是将概率分布移动一下,分布的形状依然不变。(也可以从上面的推导看出来,b被减掉了)也就是说,期望以b为幅度进行偏移,但由于形状保持不变,所以方差也保持不变。

问:我很惊奇,方差会乘以一个 a 2 a^2 a2,这是为什么?

答:变量乘以一个常数意味着所有基础数据都乘以该常数。在计算方差的过程中要计算各基础数据的平方。由于基础数据都乘以a,因此最终结果是方差乘以 a 2 a^2 a2。(很好理解啦, V a r ( X ) = E ( X − E ( x ) ) 2 = ∑ ( x − E ( x ) ) 2 P ( X = x ) Var(X) = E(X-E(x))^2= \sum(x-E(x))^2P(X=x) Var(X)=E(XE(x))2=(xE(x))2P(X=x),每个x乘以a,期望E(X)也乘以a,再相减后平方,直觉地肯定方差会是平方倍)

小知识: E ( f ( X ) ) = ∑ f ( x ) P ( X = x ) E(f(X))=\sum f(x)P(X=x) E(f(X))=f(x)P(X=x),由期望公式直接推导出

例题:

在这里插入图片描述

独立观测值

导言

假设有一台非常简单的老虎机,其概率分布X如下表所示:

X-15
P(X=x)0.90.1

为了求出2X的概率分布,只需将X乘以2,由于潜在收益翻倍,因此基础数据发生了变化。

X-210
P(2X=2x)0.90.1

进行线性变换后,所有的概率都保持不变,但可能出现的数值(2X)发生变化—发生变换的是数值而非概率。这些可能数值的数目仍然不变。

如果想在这台老虎机上玩两局,就需要从头开始计算概率分布,这时要考虑两局赌局可能出现的所有结果。

W-2410
P(W=w)0.810.18(0.09+0.09)0.01

这一次概率和数值都变了,那么如何求期望与方差呢?

如果多玩几种其他游戏,则数值和概率都发生变化,就连可能数值的数目(由2变3)也会发生变化。这时不可能只对数值进行转化,而概率的计算会迅速变得错综复杂。

每一次拉杆为一个独立观测值

在赌博机上连玩多局赌局时,每一局称为一个事件,每一局的结果称为一个观测值。每一个观测值具有相同的期望和方差,但观测值互有差别,不可能每一局的收益都一样。

我们需要用某种方法对不同赌局或观测值进行区分,如果有X代表老虎机收益的概率分布,则把第一个观测值称为 X 1 X_1 X1,把第二个观测值称为 X 2 X_2 X2

在这里插入图片描述

X 1 X_1 X1 X 2 X_2 X2都具有和X一样的概率、可能值、期望和方差,也就是说,虽然它们是互不相干的观测值,并且结果也不同,但它们的概率分布相同。

在这里插入图片描述

我们希望求出两局老虎机赌局的期望和方差,实际上就是要求 X 1 + X 2 X_1+X_2 X1+X2的期望和方差。

观测值速算法

期望

E ( X 1 + X 2 ) = E ( X 1 ) + E ( X 2 ) = E ( X ) + E ( X ) = 2 E ( X ) E(X_1+X_2) = E(X_1)+E(X_2) = E(X)+E(X)=2E(X) E(X1+X2)=E(X1)+E(X2)=E(X)+E(X)=2E(X)

如果我们已知两个观测值的期望,则将E(X)乘以2即可。可以将整个结论推广至多个观测值,若我们想求出n个观测值的期望,则可以按下式计算:
E ( X 1 + X 2 + . . . X n ) = n E ( X ) E(X_1+X_2+...X_n)=nE(X) E(X1+X2+...Xn)=nE(X)

方差

V a r ( X 1 + X 2 ) = V a r ( X 1 ) + V a r ( X 2 ) = V a r ( X ) + V a r ( X ) = 2 V a r ( X ) Var(X_1+X_2) = Var(X_1)+Var(X_2)=Var(X)+Var(X)=2Var(X) Var(X1+X2)=Var(X1)+Var(X2)=Var(X)+Var(X)=2Var(X)

与上面相同,多个观测值的时候同理:
V a r ( X 1 + X 2 + . . . X n ) = n V a r ( X ) Var(X_1+X_2+...X_n)=nVar(X) Var(X1+X2+...Xn)=nVar(X)

问:难道 E ( X 1 + X 2 ) + E ( 2 X ) E(X_1+X_2)+E(2X) E(X1+X2)+E(2X)不一样?

答:不一样。E(2X)表示将变量的基础数据翻倍,然后求期望和方差。 E ( X 1 + X 2 ) E(X_1+X_2) E(X1+X2)表示你观测到了X的两个独立结果,需要求其综合期望。

问:这么说 X 1 X_1 X1 X 2 X_2 X2是一样的?

答:它们的概率分布相同,但它们本身是不同的结果(或者说观测值)。它们的实际结果可以不一样。

例题,前面2个我无法理解,后面3个大家应该能理解。

在这里插入图片描述

我猜测:第一个的意思应该为:超大杯咖啡的咖啡量和X是线性关系,比如aX+b。第二个的意思应该为:每天多喝一杯咖啡,每喝一杯咖啡的量X和其他一杯咖啡的量是独立的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值