自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 《西瓜书》笔记:CH1和CH2

作为人工智能领域(AI)中文教材扛鼎之作,南京大学周志华教授所著的《机器学习》帮助无数AI从业者理清了机器学习的基本原理。在书中,周志华解释机器学习基本术语和问题时,贯穿全书用西瓜进行比喻讲解,因此该书也被读者们昵称为“西瓜书”。“西瓜书”被网友夸赞为“最好的中文机器学习教科书”、“神作”,自2016年问世后,已重印35次,长期位居各大畅销书榜,已被海内外500多个高校院系用作教材,是中文世界最著名、使用最多的教科书。https://zhuanlan.zhihu.com/p/404993842第1

2022-05-17 23:32:40 201

原创 笔记TASK01:Go初探

笔记TASK01:Go初探1.下载安装Go安装包2.下载安装IDE3.在VSCode中,编辑第一个Go程序4.运行HelloWorld.GO5.为VSCode安装Go插件1.下载安装Go安装包推荐网址:https://studygolang.com/dl2.下载安装IDE推荐VSCode下载网址: https://code.visualstudio.com/3.在VSCode中,编辑第一个Go程序HelloWorld.GOpackage mainimport "fmt"func mai

2020-12-14 18:36:20 113

原创 笔记:Task1赛题理解

Datawhale 零基础入门CV赛事-Task1 赛题理解本章内容将会对街景字符识别赛题进行赛题背景讲解,对赛题数据的读取进行说明,并给出集中解题思路。1 赛题理解赛题名称:零基础入门CV之街道字符识别赛题目标:通过这道赛题可以引导大家走入计算机视觉的世界,主要针对竞赛选手上手视觉赛题,提高对数据建模能力。赛题任务:赛题以计算机视觉中字符识别为背景,要求选手预测街道字符编码,这是一个典型的字符识别问题。为了简化赛题难度,赛题数据采用公开数据集SVHN,因此大家可以选择很多相应的paper作为思

2020-05-20 23:30:18 197

原创 笔记:双线性插值

已知函数 f 在 (x1, y1)、 (x1, y2), (x2, y1) 和 (x2, y2) 四个点的值,求f在点 (x, y)的值。首先在 (x1, y1)-- (x1, y2)方向进行线性插值,得到f (x1, y):继续在 (x2, y1)-- (x2, y2)方向进行线性插值,得到f (x2, y):然后在在 (x1, y)-- (x2, y)方向进行线性插值,求得f (...

2020-04-22 00:14:05 223

原创 笔记:数据缺失可视化

数据缺失可视化#coding:utf-8#导入warnings包,利用过滤器来实现忽略警告语句。import warningswarnings.filterwarnings(‘ignore’)import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as snsimport...

2020-03-28 21:53:05 543

原创 笔记:MAE和R2

平均绝对误差 平均绝对误差(Mean Absolute Error,MAE):平均绝对误差,其能更好地反映预测值与真实值误差的实际情况# 分别用函数和MAE定义来求解MAE# coding=utf-8import numpy as npfrom sklearn import metricsy_true = np.array([1.0, 5.0, 4.0, 3.0, 2.0, 5...

2020-03-24 21:48:19 804

原创 笔记:残差网络(ResNet)

class Residual(nn.Module): # 本类已保存在d2lzh_pytorch包中方便以后使用 #可以设定输出通道数、是否使用额外的1x1卷积层来修改通道数以及卷积层的步幅。 def __init__(self, in_channels, out_channels, use_1x1conv=False, stride=1): super(Resi...

2020-02-25 21:56:50 511

原创 笔记1:损失函数

def SequenceMask(X, X_len,value=0): maxlen = X.size(1) mask = torch.arange(maxlen)[None, :].to(X_len.device) < X_len[:, None] X[~mask]=value return XX = torch.tensor([[1,2,3], ...

2020-02-18 19:25:31 420

原创 笔记:权重衰减

fit_and_plot(lambd=3)def fit_and_plot_pytorch(wd): # 对权重参数衰减。权重名称一般是以weight结尾 net = nn.Linear(num_inputs, 1) nn.init.normal_(net.weight, mean=0, std=1) nn.init.normal_(net.bias, mean...

2020-02-18 19:12:19 229

原创 笔记:相邻采样

在相邻采样中,相邻的两个随机小批量在原始序列上的位置相毗邻。def data_iter_consecutive(corpus_indices, batch_size, num_steps, device=None): if device is None: device = torch.device('cuda' if torch.cuda.is_available() e...

2020-02-14 19:19:24 299

原创 笔记1:“生成数据集”的代码阅读

生成数据集使用线性模型来生成数据集,生成一个1000个样本的数据集,下面是用来生成数据的线性关系:price=????area⋅area+????age⋅age+????# set input feature number # 用来预测标签的两个因素叫作特征(feature):房屋面积和房龄num_inputs = 2# 一栋房屋被称为一个样本(sample)# set example number...

2020-02-14 14:29:59 221

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除