hdu_5720_Wool(脑洞)

题目连接:hdu_5720_Wool

题意:

给你N个数,然后给你一个区间,问你在这个区间内有多少数可以不与这N个数任选两个出来组成三角形

题解:

这里我还是贴官方的题解算了

考虑三角形三条边a,b,ca,b,c (a \ge b)(ab)的关系a - b < c, a + b > cab<c,a+b>c,即c \in (a-b,a+b)c(ab,a+b)

令加入的边为cc,枚举所有边作为aa的情况。对于所有可行的bb,显然与aa相差最小的可以让(a-b,a+b)(ab,a+b)覆盖范围最大,所以可以贪心地选择不大于aa的最大的bb

于是我们可以先将边按长度排序,然后a_iaia_{i + 1}ai+1建一条线段。线段并是不合法的部分。

将所有线段按左端点排序,按序扫描一遍,过程中统计答案即可。

时间复杂度O(Tn\ \log n)O(Tn logn)

#include<cstdio>
#include<algorithm>
#define F(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
typedef long long LL;
typedef pair<LL,LL>P;

const int N=1e5+7;
LL a[N],l,r;
P sq[N];
int main(){
	int t,n;
	scanf("%d",&t);
	while(t--){
		scanf("%d%lld%lld",&n,&l,&r);
		F(i,1,n)scanf("%lld",a+i);
		sort(a+1,a+1+n);
		F(i,1,n-1){
			sq[i].first=a[i+1]-a[i];
			sq[i].second=a[i]+a[i+1];
		}
		sort(sq+1,sq+n);
		LL ans=0;
		F(i,1,n-1){
			if(sq[i].second<=l)continue;
			if(sq[i].first>r)break;
			if(sq[i].first>=l)ans+=sq[i].first-l+1;
			l=sq[i].second;
			if(l>r)break;
		}
		if(l<=r)ans+=r-l+1;
		printf("%lld\n",ans);
	}
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值