加载模型出现 RuntimeError: Error(s) in loading state_dict for Model: Missing key(s) in state_dict

今天准备加载一个模型来测试的时候发现了一个问题,加载总是失败,报错是RuntimeError: Error(s) in loading state_dict for Model: Missing key(s) in state_dict "convd1.0.weight", "convd1.0.bias", "convd1.1.weight"  。咋一看,难道是因为我取值的问题,然后debug了一下,发现我的state_dict是符合要求的,但是为什么出现加载不了?

问题代码

    model = m.Model()
    checkpoint = torch.load("ckpts/cdnn/model.tar",map_location='cpu')
    state_dict  = checkpoint['state_dict']
    # print(state_dict)
    model.load_state_dict(state_dict)

问题的现象

原因  

加载使用模型时和训练模型时的环境不一致,这个模型是用GPU训练的,我本是使用的是CPU,所以会有些问题

 

解决办法

将load_state_dict(state_dict) 改成  model.load_state_dict(state_dict, False)

分析

 def load_state_dict(self, state_dict, strict=True):
        r"""Copies parameters and buffers from :attr:`state_dict` into
        this module and its descendants. If :attr:`strict` is ``True``, then
        the keys of :attr:`state_dict` must exactly match the keys returned
        by this module's :meth:`~torch.nn.Module.state_dict` function.

        Arguments:
            state_dict (dict): a dict containing parameters and
                persistent buffers.
            strict (bool, optional): whether to strictly enforce that the keys
                in :attr:`state_dict` match the keys returned by this module's
                :meth:`~torch.nn.Module.state_dict` function. Default: ``True``

上面是load_state_dict方法参数的官方说明 strict  参数默认是true,他的含义是 是否严格要求state_dict中的键与该模块的键返回的键匹配

这行代码生效的原理详见load_state_dict中的一段代码

        if strict:
            error_msg = ''
            if len(unexpected_keys) > 0:
                error_msgs.insert(
                    0, 'Unexpected key(s) in state_dict: {}. '.format(
                        ', '.join('"{}"'.format(k) for k in unexpected_keys)))
            if len(missing_keys) > 0:
                error_msgs.insert(
                    0, 'Missing key(s) in state_dict: {}. '.format(
                        ', '.join('"{}"'.format(k) for k in missing_keys)))

        if len(error_msgs) > 0:
            raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
                               self.__class__.__name__, "\n\t".join(error_msgs)))

就是说,如果strict 置为false那么就可以忽略掉报错,请注意是忽略哦!!!

看了这段代码后,我觉得一脸懵逼, 这个属性意思的理解是不是要让我们定义的Model中的键与我们加载模型里面的键严格一致,按理说,这个不是一定要严格一致的吗?不然不匹配乱加载那不是乱套了,但是很神奇的一件事情就是pytorch这个方法设计了一个开关,你可以选择关闭,忽略掉这个异常,不清楚这个是否会影响我们加载的模型的效果,我要验证下!

 

以上是我的胡乱猜想,望大神们批评指教!

React Hooks 是 React 16.8 中新增的特性,它可以让你在函数组件中使用 state、生命周期钩子等 React 特性。使用 Hooks 可以让你写出更简洁、可复用且易于测试的代码。 React Hooks 提供了一系列的 Hook 函数,包括 useState、useEffect、useContext、useReducer、useCallback、useMemo、useRef、useImperativeHandle、useLayoutEffect 和 useDebugValue。每个 Hook 都有特定的用途,可以帮助你处理不同的问题。 下面是 React Hooks 的一些常用 Hook 函数: 1. useState useState 是最常用的 Hook 之一,它可以让你在函数组件中使用 state。useState 接受一个初始状态值,并返回一个数组,数组的第一个值是当前 state 值,第二个值是更新 state 值的函数。 ``` const [count, setCount] = useState(0); ``` 2. useEffect useEffect 可以让你在组件渲染后执行一些副作用操作,比如订阅事件、异步请求数据等。useEffect 接受两个参数,第一个参数是一个回调函数,第二个参数是一个数组,用于控制 useEffect 的执行时机。 ``` useEffect(() => { // 这里可以执行副作用操作 }, [dependencies]); ``` 3. useContext useContext 可以让你在组件树中获取 context 的值。它接受一个 context 对象,并返回该 context 的当前值。 ``` const value = useContext(MyContext); ``` 4. useRef useRef 可以让你在组件之间共享一个可变的引用。它返回一个对象,该对象的 current 属性可以存储任何值,并在组件的生命周期中保持不变。 ``` const ref = useRef(initialValue); ref.current = value; ``` 5. useCallback useCallback 可以让你缓存一个函数,以避免在每次渲染时都创建一个新的函数实例。它接受一个回调函数和一个依赖数组,并返回一个 memoized 的回调函数。 ``` const memoizedCallback = useCallback(() => { // 这里是回调函数的逻辑 }, [dependencies]); ``` 6. useMemo useMemo 可以让你缓存一个计算结果,以避免在每次渲染时都重新计算。它接受一个计算函数和一个依赖数组,并返回一个 memoized 的计算结果。 ``` const memoizedValue = useMemo(() => computeExpensiveValue(a, b), [a, b]); ``` 以上就是 React Hooks 的一些常用 Hook 函数,它们可以帮助你更好地处理组件状态、副作用、上下文和性能优化等问题。
评论 97
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值