哈希表大多用来快速判断一个元素是否已经出现集合里,常常使用的三种数据结构为:
1,数组,常见使用在元素个数有限的情况下(26个字母)
2,set(集合),不需要映射时常常使用这个结构,例如不需要记录下标或只需要记录下标
3,map(映射),和字典一样,常常用于记录需要一一对应的情况。
集合 | 底层实现 | 是否有序 | 数值是否可以重复 | 能否更改数值 | 查询效率 | 增删效率 |
---|---|---|---|---|---|---|
std::set | 红黑树 | 有序 | 否 | 否 | O(log n) | O(log n) |
std::multiset | 红黑树 | 有序 | 是 | 否 | O(logn) | O(logn) |
std::unordered_set | 哈希表 | 无序 | 否 | 否 | O(1) | O(1) |
映射 | 底层实现 | 是否有序 | 数值是否可以重复 | 能否更改数值 | 查询效率 | 增删效率 |
---|---|---|---|---|---|---|
std::map | 红黑树 | key有序 | key不可重复 | key不可修改 | O(logn) | O(logn) |
std::multimap | 红黑树 | key有序 | key可重复 | key不可修改 | O(log n) | O(log n) |
std::unordered_map | 哈希表 | key无序 | key不可重复 | key不可修改 | O(1) | O(1) |
以上是set和map的几种实现,还需要学习红黑树等。
要使用集合来解决哈希问题的时候,优先使用unordered_set(无序,不能重复),因为它的查询和增删效率是最优的,如果需要集合是有序的,那么就用set(有序,不能重复),如果要求不仅有序还要有重复数据的话,那么就用multiset(有序,可以重复)。
242.有效的字母异位词
针对26个字母(有限),更好的方法使用int [26]
class Solution {
public:
// 更好的方法是用int[26] 来代替哈希表
bool isAnagram(string s, string t) {
unordered_map<char, int> mp;
for(char ca : s){
mp[ca]++;
}
for(char ca : t){
if(!mp.count(ca)){
return false;
}else{
mp[ca]--;
}
if(mp[ca] == 0){
mp.erase(ca);
}
}
if(!mp.empty()){
return false;
}
return true;
}
};
349. 两个数组的交集
class Solution {
public:
vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
unordered_set<int> set;
vector<int> res;
for(int num1 : nums1){
if(!set.count(num1)){
set.insert(num1);
}
}
for(int num2 : nums2){
if(set.count(num2)){
res.push_back(num2);
set.erase(num2);
}
}
return res;
}
};
202. 快乐数,
class Solution {
public:
// hash表的作用为判断循环条件
bool isHappy(int n) {
unordered_set<int> set;
int new_num = n;
while(!set.count(new_num) && new_num != 1){
set.insert(new_num);
int sum = 0, div = new_num;
while(div > 0){
int remainder = div % 10;
div = div / 10;
sum += remainder * remainder;
}
new_num = sum;
}
if(new_num != 1){
return false;
}
return true;
}
};
1. 两数之和
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
unordered_map<int, int> mp;
for(int i = 0; i < nums.size(); i++){
if(mp.count(target - nums[i])){
return {i, mp[target - nums[i]]};
}
mp[nums[i]] = i;
}
return {1, 1};
}
};