# 使用Python合并excel表格的两列

113 篇文章 13 订阅

I have a 20 x 4000 dataframe in python using pandas. 我在Python中使用熊猫有20 x 4000数据帧。 Two of these columns are named Year and quarter. 这些列中的两个分别命名为Year和Quarter。 I'd like to create a variable called period that makes Year = 2000 and quarter= q2 into 2000q2 我想创建一个称为period的变量，使Year = 2000 and Quarter = q2变成2000q2

Can anyone help with that? 有人可以帮忙吗？

#### #2楼

dataframe["period"] = dataframe["Year"].map(str) + dataframe["quarter"]


#### #3楼

df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']})
df['period'] = df[['Year', 'quarter']].apply(lambda x: ''.join(x), axis=1)

Yields this dataframe 产生此数据框

   Year quarter  period
0  2014      q1  2014q1
1  2015      q2  2015q2

This method generalizes to an arbitrary number of string columns by replacing df[['Year', 'quarter']] with any column slice of your dataframe, eg df.iloc[:,0:2].apply(lambda x: ''.join(x), axis=1) . 通过将df[['Year', 'quarter']]替换为数据帧的任何列切片，例如df.iloc[:,0:2].apply(lambda x: ''.join(x), axis=1) 。

#### #4楼

Although the @silvado answer is good if you change df.map(str) to df.astype(str) it will be faster: 尽管如果将df.map(str)更改为df.map(str) ， df.astype(str) silvado答案很好，但它会更快：

import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']})

In [131]: %timeit df["Year"].map(str)
10000 loops, best of 3: 132 us per loop

In [132]: %timeit df["Year"].astype(str)
10000 loops, best of 3: 82.2 us per loop

#### #5楼

The method cat() of the .str accessor works really well for this: .str访问器的cat()方法对此非常有效：

>>> import pandas as pd
>>> df = pd.DataFrame([["2014", "q1"],
...                    ["2015", "q3"]],
...                   columns=('Year', 'Quarter'))
>>> print(df)
Year Quarter
0  2014      q1
1  2015      q3
>>> df['Period'] = df.Year.str.cat(df.Quarter)
>>> print(df)
Year Quarter  Period
0  2014      q1  2014q1
1  2015      q3  2015q3

cat() even allows you to add a separator so, for example, suppose you only have integers for year and period, you can do this: cat()甚至允许您添加一个分隔符，因此，例如，假设年份和期间只有整数，则可以执行以下操作：

>>> import pandas as pd
>>> df = pd.DataFrame([[2014, 1],
...                    [2015, 3]],
...                   columns=('Year', 'Quarter'))
>>> print(df)
Year Quarter
0  2014       1
1  2015       3
>>> df['Period'] = df.Year.astype(str).str.cat(df.Quarter.astype(str), sep='q')
>>> print(df)
Year Quarter  Period
0  2014       1  2014q1
1  2015       3  2015q3

Joining multiple columns is just a matter of passing either a list of series or a dataframe containing all but the first column as a parameter to str.cat() invoked on the first column (Series): 连接多列只是传递一系列列表或包含除第一列之外的所有列的数据str.cat()作为在第一列（系列）上调用的str.cat()的参数的问题：

>>> df = pd.DataFrame(
...      ['Brazil', 'Pernambuco', 'Recife']],
...     columns=['Country', 'State', 'City'],
... )
>>> df['AllTogether'] = df['Country'].str.cat(df[['State', 'City']], sep=' - ')
>>> print(df)
Country       State       City                   AllTogether
1  Brazil  Pernambuco     Recife  Brazil - Pernambuco - Recife

Do note that if your pandas dataframe/series has null values, you need to include the parameter na_rep to replace the NaN values with a string, otherwise the combined column will default to NaN. 请注意，如果您的pandas数据框/系列具有空值，则需要包括参数na_rep以用字符串替换NaN值，否则合并的列将默认为NaN。

#### #6楼

Use of a lamba function this time with string.format(). 这次通过string.format（）使用lamba函数。

import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'Quarter': ['q1', 'q2']})
print df
df['YearQuarter'] = df[['Year','Quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1)
print df

Quarter  Year
0      q1  2014
1      q2  2015
Quarter  Year YearQuarter
0      q1  2014      2014q1
1      q2  2015      2015q2

This allows you to work with non-strings and reformat values as needed. 这使您可以根据需要使用非字符串并重新格式化值。

import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'Quarter': [1, 2]})
print df.dtypes
print df

df['YearQuarter'] = df[['Year','Quarter']].apply(lambda x : '{}q{}'.format(x[0],x[1]), axis=1)
print df

Quarter     int64
Year       object
dtype: object
Quarter  Year
0        1  2014
1        2  2015
Quarter  Year YearQuarter
0        1  2014      2014q1
1        2  2015      2015q2

• 2
点赞
• 13
收藏
觉得还不错? 一键收藏
• 0
评论
09-29 2万+
03-30 1万+
03-23 671
06-13 7810
10-24 6178

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、付费专栏及课程。