最长上升子序列

原题;

题目描述

一个数的序列bi,当b 1 < b 2 < ... < b S的时候,我们称这个序列是上升的。对于给定的一个序列(a 1, a 2, ..., a N),我们可以得到一些上升的子序列(a i1, a i2, ..., a iK),这里1<= i 1 < i 2 < ... < i K <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8)。

你的任务,就是对于给定的序列,求出最长上升子序列的长度。

输入

输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。

输出

最长上升子序列的长度。

示例输入

7
1 7 3 5 9 4 8

示例输出

4

 

 

分析:

dp第二弹~~~~~

 

源码1——dp

#include <iostream>
using namespace std;
int main()
{
    int i,j,n,a[100],b[100],max;
    while(cin>>n)
    {
        for(i=0;i<n;i++)
            cin>>a[i];
        b[0]=1;             //初始化,以a[0]结尾的最长递增子序列长度为1
        for(i=1;i<n;i++)
        {
            b[i]=1;         //b[i]最小值为1
            for(j=0;j<i;j++)
                if(a[i]>a[j]&&b[j]+1>b[i])
                    b[i]=b[j]+1;
        }
        for(max=i=0;i<n;i++)//求出整个数列的最长递增子序列的长度
            if(b[i]>max)
            max=b[i];
        cout<<max<<endl;
    }
      return 0;
}


 

 源码2:又称作LIS算法
#include<stdio.h>
int z[1007],dp[1007];
int main()
{
    int n,i,j;
    scanf("%d",&n);
    for(i=1; i<=n; i++)
    {
        scanf("%d",&z[i]);
    }
    dp[1]=z[1];
    int left,right,lenth=1;
    for(j=2; j<=n; j++)
    {
        left=1;
        right=lenth;
        while(left<=right)
        {
            int mid=(left+right)/2;
            if(dp[mid]<z[j])
            {
                left=mid+1;
            }
            else right=mid-1;
        }
        dp[left]=z[j];
        if(left>lenth)
        lenth++;
    }
    printf("%d\n",lenth);
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值