原题;
题目描述
一个数的序列bi,当b
1 < b
2 < ... < b
S的时候,我们称这个序列是上升的。对于给定的一个序列(a
1, a
2, ..., a
N),我们可以得到一些上升的子序列(a
i1, a
i2, ..., a
iK),这里1<= i
1 < i
2 < ... < i
K <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8)。
你的任务,就是对于给定的序列,求出最长上升子序列的长度。
你的任务,就是对于给定的序列,求出最长上升子序列的长度。
输入
输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。
输出
最长上升子序列的长度。
示例输入
7 1 7 3 5 9 4 8
示例输出
4
分析:
dp第二弹~~~~~
源码1——dp
#include <iostream>
using namespace std;
int main()
{
int i,j,n,a[100],b[100],max;
while(cin>>n)
{
for(i=0;i<n;i++)
cin>>a[i];
b[0]=1; //初始化,以a[0]结尾的最长递增子序列长度为1
for(i=1;i<n;i++)
{
b[i]=1; //b[i]最小值为1
for(j=0;j<i;j++)
if(a[i]>a[j]&&b[j]+1>b[i])
b[i]=b[j]+1;
}
for(max=i=0;i<n;i++)//求出整个数列的最长递增子序列的长度
if(b[i]>max)
max=b[i];
cout<<max<<endl;
}
return 0;
}
源码2:又称作LIS算法
#include<stdio.h>
int z[1007],dp[1007];
int main()
{
int n,i,j;
scanf("%d",&n);
for(i=1; i<=n; i++)
{
scanf("%d",&z[i]);
}
dp[1]=z[1];
int left,right,lenth=1;
for(j=2; j<=n; j++)
{
left=1;
right=lenth;
while(left<=right)
{
int mid=(left+right)/2;
if(dp[mid]<z[j])
{
left=mid+1;
}
else right=mid-1;
}
dp[left]=z[j];
if(left>lenth)
lenth++;
}
printf("%d\n",lenth);
return 0;
}