Hive参数配置调优

hive通过将查询划分成一个或多个MapReduce任务达到并行处理的目的。每个任务都可能具有多个mapper和reducer任务,其中至少有一些是可以并行执行的。

确定最佳的mapper个数和reducer个数取决于多个变量,例如输入的数据量大小以及对这些数据执行的操作类型等。

保持平衡性是很有必要的,对于Spark/Hadoop这样的大数据系统来讲,数据量大并不可怕,可怕的是数据倾斜,每个节点处理的运算不均衡。

如果有太多的mapper或reducer任务,就会导致启动阶段、调度和运行job过程中产生过多的开销;而如果设置的数量太少,那就有可能没充分利用好集群内在并行性。

mapred.reduce.tasks 

所提交 Job 的 reduer 的个数,使用 Hadoop Client 的配置。 

1

hive.mapred.mode 

Map/Redure 模式,如果设置为 strict,将禁止3中类型的查询:

1.分区表的where筛选条件必须含有分区字段;

2.对使用了order by语句的查询,必须使用limit语句

(order by语句为执行排序会将所有的结果集数据分发到同一个reducer中进行处理,增加limit语句可以防止reducer额外执行很长时间)

3.限制笛卡儿积的查询,就是有where语句,而没有on语句。 

'nonstrict'

hive.merge.mapfiles 

在Map-only的任务结束时合并小文件

是否开启合并 Map 端小文件,当Hive输入由很多个小文件组成,由于每个小文件都会启动一个map任务,

如果文件过小,会使得map任务启动和初始化的时间大于逻辑处理的时间,造成资源浪费,甚至OOM。

为此,当我们启动一个任务,发现输入数据量小但任务数量多时,需要注意在Map前端进行输入合并。

当然,在我们向一个表写数据时,也需要注意输出文件大小

true

hive.merge.mapredfiles 

是否开启合并 Map/Reduce 小文件,即是否在Map-Reduce的任务结束时合并小文件

false

hive.exec.parallel 

是否开启 map/reduce job的并发提交。 

false

hive.limit.optimize.enable

当使用LIMIT语句时,其可以对数据源进行抽样,避免执行整个查询语句,然后再返回部分结果

但这个功能有个缺点,有可能输入中有用的数据永远不会被处理到。

hive.exec.reducers.bytes.per.reducer 

每一个 reducer 的平均负载字节数。 

1000000000   

hive.exec.reducers.max 

设置reducer个数的上限,可以阻止某个查询消耗过多的reducer资源,对这个属性值大小的设定,一个建议的计算公式如下:

(集群总Reduce槽位个数*1.5) / (执行中查询的平均个数)

1.5倍数是一个经验系数,用于防止未充分利用集群的情况。 
999

hive.exec.rowoffset

hive提供了2种虚拟列:一种用于将要进行划分的输入文件名,另一种用于文件中的块内偏移量。

当hive产生了非预期的或null的返回结果时,可以通过这些虚拟列诊断查询。通过这些“字段”,用户可以查看到哪个文件甚至哪些数据导致出现问题:

SELECT 
INPUT_FILE_NAME,
BLOCK_OFFSET_INSIDE_FILE,
ROW_OFFSET_INSIDE_BLOCK,
line 
FROM hive_text 
WHERE line LIKE '%hive%' LIMIT 2;
true

hive.multigroupby.singlemr

一个特别的优化,是否将查询中的多个group by操作组装到单个MapReduce任务中。

false

hive.exec.dynamic.partition 

是否打开动态分区。 

false

hive.exec.dynamic.partition.mode 

打开动态分区后,动态分区的模式,有 strict 和 nonstrict 两个值可选,strict 要求至少包含一个静态分区列,nonstrict 则无此要求。 

strict    

hive.exec.max.dynamic.partitions 

所允许的最大的动态分区的个数。 

1000

hive.exec.max.dynamic.partitions.pernode 

单个 reduce 结点所允许的最大的动态分区的个数。 

100

hive.exec.default.partition.name 

默认的动态分区的名称,当动态分区列为''或者null时,使用此名称。

'__HIVE_DEFAULT_PARTITION__'

hive.exec.mode.local.auto 

决定 Hive 是否应该自动地根据输入文件大小,在本地运行(在GateWay运行) 

true

hive.exec.mode.local.auto.inputbytes.max 

如果 hive.exec.mode.local.auto 为 true,当输入文件大小小于此阈值时可以自动在本地模式运行,默认是 128M。 

134217728L

hive.exec.mode.local.auto.tasks.max 

如果 hive.exec.mode.local.auto 为 true,当 Hive Tasks(Hadoop Jobs)小于此阈值时,可以自动在本地模式运行。 

4

hive.auto.convert.join 

是否根据输入小表的大小,自动将 Reduce 端的 Common Join 转化为 Map Join,从而加快大表关联小表的 Join 速度。 

false

hive.mapred.local.mem 

Mapper/Reducer 在本地模式的最大内存量,以字节为单位,0为不限制。 

0

hive.exec.scratchdir 

HDFS路径,用于存储不同 map/reduce 阶段的执行计划和这些阶段的中间输出结果。 

/tmp/<user.name>/hive    

hive.metastore.warehouse.dir 

Hive 默认的数据文件存储路径,通常为 HDFS 可写的路径。 

"    

hive.groupby.skewindata 

决定 group by 操作是否支持倾斜的数据。 

false

hive.default.fileformat 

Hive 默认的输出文件格式,与创建表时所指定的相同,可选项为 'TextFile' 、 'SequenceFile' 或者 'RCFile'。 

'TextFile'

hive.security.authorization.enabled 

Hive 是否开启权限认证。 

false    

hive.exec.plan 

Hive 执行计划的路径,会在程序中自动进行设置 

null   

hive.exec.submitviachild 

决定 map/reduce Job 是否应该使用各自独立的 JVM 进行提交(Child进程),默认情况下,使用与 HQL compiler 相同的 JVM 进行提交。 

false    

hive.exec.script.maxerrsize 

通过 TRANSFROM/MAP/REDUCE 所执行的用户脚本所允许的最大的序列化错误数。 

100000    

hive.exec.script.allow.partial.consumption 

是否允许脚本只处理部分数据,如果设置为 true ,因 broken pipe 等造成的数据未处理完成将视为正常。 

false    

hive.exec.compress.output 

决定查询中最后一个 map/reduce job 的输出是否为压缩格式。 

false    

hive.exec.compress.intermediate 

决定查询的中间 map/reduce job (中间 stage)的输出是否为压缩格式。 

false    

hive.intermediate.compression.codec 

中间 map/reduce job 的压缩编解码器的类名(一个压缩编解码器可能包含多种压缩类型),该值可能在程序中被自动设置。     

hive.intermediate.compression.type 

中间 map/reduce job 的压缩类型,如 "BLOCK" "RECORD"。    

hive.exec.pre.hooks 

语句层面,整条 HQL 语句在执行前的 hook 类名。 

"    

hive.exec.post.hooks 

语句层面,整条 HQL 语句在执行完成后的 hook 类名。         

hive.exec.parallel.thread.number 

并发提交时的并发线程的个数。 

8   

hive.mapred.reduce.tasks.speculative.execution 

是否开启 reducer 的推测执行,与 mapred.reduce.tasks.speculative.execution 作用相同。 

false   

hive.exec.counters.pull.interval 

客户端拉取 progress counters 的时间,以毫秒为单位。 

1000L 

hadoop.bin.path 

Hadoop Client 可执行脚本的路径,该路径用于通过单独的 JVM 提交 job,使用 Hadoop Client 的配置。 

$HADOOP_HOME/bin/hadoop    

hadoop.config.dir 

Hadoop Client 配置文件的路径,使用 Hadoop Client 的配置。 

$HADOOP_HOME/conf    

fs.default.name 

Namenode 的 URL,使用 Hadoop Client 的配置。 

file:///    

map.input.file 

Map 的输入文件,使用 Hadoop Client 的配置。 

null   

mapred.input.dir 

Map 的输入目录,使用 Hadoop Client 的配置。 

null  

mapred.input.dir.recursive 

输入目录是否可递归嵌套,使用 Hadoop Client 的配置。 

false   

mapred.job.tracker 

Job Tracker 的 URL,使用 Hadoop Client 的配置,如果这个配置设置为 'local',将使用本地模式。 

local   

mapred.job.name 

Map/Reduce 的 job 名称,如果没有设置,则使用生成的 job name,使用 Hadoop Client 的配置。 

null   

mapred.reduce.tasks.speculative.execution 

Map/Reduce 推测执行,使用 Hadoop Client 的配置。 

null   

hive.metastore.metadb.dir 

Hive 元数据库所在路径。 

"    

hive.metastore.uris 

Hive 元数据的 URI,多个 thrift://地址,以英文逗号分隔。 

"    

hive.metastore.connect.retries 

连接到 Thrift 元数据服务的最大重试次数。 

3    

javax.jdo.option.ConnectionPassword 

JDO 的连接密码。 

"    

hive.metastore.ds.connection.url.hook 

JDO 连接 URL Hook 的类名,该 Hook 用于获得 JDO 元数据库的连接字符串,为实现了 JDOConnectionURLHook 接口的类。 

 "    

javax.jdo.option.ConnectionURL 

元数据库的连接 URL。 

"   

hive.metastore.ds.retry.attempts 

当没有 JDO 数据连接错误后,尝试连接后台数据存储的最大次数。 

1   

hive.metastore.ds.retry.interval 

每次尝试连接后台数据存储的时间间隔,以毫秒为单位。 

1000    

hive.metastore.force.reload.conf 

是否强制重新加载元数据配置,一但重新加载,该值就会被重置为 false。 

false  

hive.metastore.server.min.threads 

Thrift 服务线程池的最小线程数。 

8   

hive.metastore.server.max.threads 

Thrift 服务线程池的最大线程数。 

0x7fffffff   

hive.metastore.server.tcp.keepalive 

Thrift 服务是否保持 TCP 连接。 

true  

hive.metastore.archive.intermediate.original 

用于归档压缩的原始中间目录的后缀,这些目录是什么并不重要,只要能够避免冲突即可。 

'_INTERMEDIATE_ORIGINAL' 

hive.metastore.archive.intermediate.archived 

用于归档压缩的压缩后的中间目录的后缀,这些目录是什么并不重要,只要能够避免冲突即可。 

'_INTERMEDIATE_ARCHIVED'    

hive.metastore.archive.intermediate.extracted 

用于归档压缩的解压后的中间目录的后缀,这些目录是什么并不重要,只要能够避免冲突即可。 

'_INTERMEDIATE_EXTRACTED'   

hive.cli.errors.ignore 

是否忽略错误,对于包含多的 SQL 文件,可以忽略错误的行,继续执行下一行。 

false  

hive.session.id 

当前会话的标识符,格式为“用户名_时间”用于记录在 job conf 中,一般不予以手动设置。 

"    

hive.session.silent 

当前会话是否在 silent 模式运行。 如果不是 silent 模式,所以 info 级打在日志中的消息,都将以标准错误流的形式输出到控制台。

false   

hive.query.string 

当前正在被执行的查询字符串。 

"    

hive.query.id 

当前正在被执行的查询的ID。 

"    

hive.query.planid 

当前正在被执行的 map/reduce plan 的 ID。 

"    

hive.jobname.length 

当前 job name 的最大长度,hive 会根据此长度省略 job name 的中间部分。 

50    

hive.jar.path 

通过单独的 JVM 提交 job 时,hive_cli.jar 所在的路径 

"    

hive.aux.jars.path 

各种由用户自定义 UDF 和 SerDe 构成的插件 jar 包所在的路径。 

"   

hive.added.files.path 

ADD FILE 所增加的文件的路径。 

"   

hive.added.jars.path 

ADD JAR 所增加的文件的路径。 

"   

hive.added.archives.path 

ADD ARCHIEVE 所增加的文件的路径。 

"   

hive.table.name 

当前的 Hive 表的名称,该配置将通过 ScirptOperator 传入到用户脚本中。 

"    

hive.partition.name 

当前的 Hive 分区的名称,该配置将通过 ScriptOperator 传入到用户脚本中。 

"    

hive.script.auto.progress 

脚本是否周期性地向 Job Tracker 发送心跳,以避免脚本执行的时间过长,使 Job Tracker 认为脚本已经挂掉了。 

false    

hive.script.operator.id.env.var 

用于识别 ScriptOperator ID 的环境变量的名称。 

'HIVE_SCRIPT_OPERATOR_ID'    

hive.alias 

当前的 Hive 别名,该配置将通过 ScriptOpertaor 传入到用户脚本中。 

"   

hive.map.aggr 

决定是否可以在 Map 端进行聚合操作 

true    

hive.join.emit.interval 

Hive Join 操作的发射时间间隔,以毫秒为单位。 

1000   

hive.join.cache.size 

Hive Join 操作的缓存大小,以字节为单位。 

25000    

hive.mapjoin.bucket.cache.size 

Hive Map Join 桶的缓存大小,以字节为单位。 

100    

hive.mapjoin.size.key 

Hive Map Join 每一行键的大小,以字节为单位。 

10000   

hive.mapjoin.cache.numrows 

Hive Map Join 所缓存的行数。 

25000    

hive.groupby.mapaggr.checkinterval 

对于 Group By 操作的 Map 聚合的检测时间,以毫秒为单位。 

100000  

hive.map.aggr.hash.percentmemory 

Hive Map 端聚合的哈稀存储所占用虚拟机的内存比例。 

0.5   

hive.map.aggr.hash.min.reduction 

Hive Map 端聚合的哈稀存储的最小 reduce 比例。 

0.5    

hive.udtf.auto.progress 

Hive UDTF 是否周期性地报告心跳,当 UDTF 执行时间较长且不输出行时有用。 

false    

hive.fileformat.check 

Hive 是否检查输出的文件格式。 

true    

hive.querylog.location 

Hive 实时查询日志所在的目录,如果该值为空,将不创建实时的查询日志。 

'/tmp/$USER'   

hive.script.serde 

Hive 用户脚本的 SerDe。 

'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'    

hive.script.recordreader 

Hive 用户脚本的 RecordRedaer。 

'org.apache.hadoop.hive.ql.exec.TextRecordReader'    

hive.script.recordwriter 

Hive 用户脚本的 RecordWriter。 

'org.apache.hadoop.hive.ql.exec.TextRecordWriter'   

hive.hwi.listen.host 

HWI 所绑定的 HOST 或者 IP。 

'0.0.0.0'    

hive.hwi.listen.port 

HWI 所监听的 HTTP 端口。 

9999    

hive.hwi.war.file 

HWI 的 war 文件所在的路径。 

$HWI_WAR_FILE   

hive.test.mode 

是否以测试模式运行 Hive 

false    

hive.test.mode.prefix 

Hive 测试模式的前缀。 

'test_'    

hive.test.mode.samplefreq 

Hive 测试模式取样的频率,即每秒钟取样的次数。 

32   

hive.test.mode.nosamplelist 

Hive 测试模式取样的排除列表,以逗号分隔。 

"    

hive.merge.size.per.task 

每个任务合并后文件的大小,根据此大小确定 reducer 的个数,默认 256 M。 

256000000    

hive.merge.smallfiles.avgsize 

需要合并的小文件群的平均大小,默认 16 M。 

16000000    

hive.optimize.skewjoin 

是否优化数据倾斜的 Join,对于倾斜的 Join 会开启新的 Map/Reduce Job 处理。 

false    

hive.skewjoin.key 

倾斜键数目阈值,超过此值则判定为一个倾斜的 Join 查询。 

1000000   

hive.skewjoin.mapjoin.map.tasks 

处理数据倾斜的 Map Join 的 Map 数上限。 

10000   

hive.skewjoin.mapjoin.min.split 

处理数据倾斜的 Map Join 的最小数据切分大小,以字节为单位,默认为32M。 

33554432   

mapred.min.split.size 

Map Reduce Job 的最小输入切分大小,与 Hadoop Client 使用相同的配置。 

1    

hive.mergejob.maponly 

是否启用 Map Only 的合并 Job。 

true   

hive.heartbeat.interval 

Hive Job 的心跳间隔,以毫秒为单位。 

1000    

hive.mapjoin.maxsize 

Map Join 所处理的最大的行数。超过此行数,Map Join进程会异常退出。 

1000000   

hive.hashtable.initialCapacity 

Hive 的 Map Join 会将小表 dump 到一个内存的 HashTable 中,该 HashTable 的初始大小由此参数指定。 

100000   

hive.hashtable.loadfactor 

Hive 的 Map Join 会将小表 dump 到一个内存的 HashTable 中,该 HashTable 的负载因子由此参数指定。 

0.75    

hive.mapjoin.followby.gby.localtask.max.memory.usage 

MapJoinOperator后面跟随GroupByOperator时,内存的最大使用比例 

0.55   

hive.mapjoin.localtask.max.memory.usage 

Map Join 的本地任务使用堆内存的最大比例 

0.9

hive.mapjoin.check.memory.rows 

设置每多少行检测一次内存的大小,如果超过 hive.mapjoin.localtask.max.memory.usage 则会异常退出,Map Join 失败。 

100000   

hive.debug.localtask 

是否调试本地任务,目前该参数没有生效 

false   

hive.task.progress 

是否开启 counters ,以记录 Job 执行的进度,同时客户端也会拉取进度 counters。 

false    
hive.input.format 

Hive 的输入 InputFormat。 

默认是org.apache.hadoop.hive.ql.io.HiveInputFormat,其他还有org.apache.hadoop.hive.ql.io.CombineHiveInputFormat    

hive.enforce.bucketing 

是否启用强制 bucketing。 

false    

hive.enforce.sorting 

是否启用强制排序。 

false   

hive.mapred.partitioner 

Hive 的 Partitioner 类。 

'org.apache.hadoop.hive.ql.io.DefaultHivePartitioner'    

hive.exec.script.trust 

Hive Script Operator For trust 

false    
hive.hadoop.supports.splittable.combineinputformat 

是否支持可切分的 CombieInputFormat 

false    
hive.optimize.cp 

是否优化列剪枝。 

true    
hive.optimize.ppd 

是否优化谓词下推。 

true    
hive.optimize.groupby 

是否优化 group by。 

true    
hive.optimize.bucketmapjoin 

是否优化 bucket map join。 

false   
hive.optimize.bucketmapjoin.sortedmerge 

是否在优化 bucket map join 时尝试使用强制 sorted merge bucket map join。 

false    
hive.optimize.reducededuplication 

是否优化 reduce 冗余。 

true    
hive.hbase.wal.enabled 

是否开启 HBase Storage Handler。 

true   
hive.archive.enabled 

是否启用 har 文件。 

false   

hive.archive.har.parentdir.settable 

是否启用 har 文件的父目录可设置。 

false   

hive.outerjoin.supports.filters 

是否启动外联接支持过滤条件。 

true   

hive.fetch.output.serde 

对于 Fetch Task 的 SerDe 类 

'org.apache.hadoop.hive.serde2.DelimitedJSONSerDe'   
hive.semantic.analyzer.hook 

Hive 语义分析的 Hook,在语义分析阶段的前后被调用,用于分析和修改AST及生成的执行计划,以逗号分隔。 

null   
hive.cli.print.header 

是否显示查询结果的列名,默认为不显示。 

false    

hive.cli.encoding 

Hive 默认的命令行字符编码。 

'UTF8'    

hive.log.plan.progress 

是否记录执行计划的进度。 

true   
hive.exec.script.wrapper 
Script Operator 脚本调用的封装,通常为脚本解释程序。例如,可以把该变量值的名称设置为"python",那么传递到 Script Operator 的脚本将会以"python <script command>"的命令形式进行调用,如果这个值为null或者没有设置,那么该脚本将会直接以"<script command>"的命令形式调用。 
null



参考资料《Hive编程指南》  及  各种网络搜集资料

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值