最简洁的员工画像解决方案(学习使用)

背景

企业员工画像:通过不同维度分析,全方位了解每名员工详细情况。

从四个部分详细展开:

  1. 基础数据字段清单 - 列出所有收集的原始数据字段
  2. 数据分析规则 - 定义每个标签/指标的计算逻辑
  3. 画像维度清单 - 展示最终输出的分析维度
  4. 输出结果示例 - 呈现高层可看到的报告/看板内容

落地方案

详细落地方案:四大核心要素分解


一、基础数据全部字段清单

原则:最小化必要字段(共32个字段,分5大类)

数据类别字段名类型说明数据来源
身份信息employee_idString员工唯一编码(哈希加密存储)HR系统主键
nameString姓名(显示用)HR系统
department_codeString部门编码(关联组织架构)HR系统
job_titleString岗位名称HR系统
job_levelString职级(P6/M3等)HR系统
report_to_idString直属上级ID(哈希加密)HR系统
hire_dateDate入职日期HR系统
绩效表现perf_rating_2023Float2023年绩效评分(0-5分)绩效系统
perf_rating_2022Float2022年绩效评分绩效系统
perf_rating_2021Float2021年绩效评分绩效系统
key_achievementText关键成就摘要(AI自动摘要100字内)绩效系统+人工审核
能力技能core_skill_1String核心技能1(如Python)LMS系统
core_skill_1_levelInteger技能1掌握度(1-5分)LMS系统
core_skill_2String核心技能2(如项目管理)LMS系统
core_skill_2_levelInteger技能2掌握度LMS系统
required_skill_gapInteger岗位必备技能缺口数HR岗位说明书
certification_countInteger专业认证数量(AWS/CPA等)LMS系统
发展轨迹high_potential_flagBoolean是否高潜人才(true/false)HRBP人工标记
key_project_countInteger近2年参与重点项目数量项目管理系统
mentor_experienceInteger担任导师次数HR系统
last_promotion_dateDate最近晋升日期HR系统
薪酬稳定性base_salaryInteger基本月薪(人民币)薪酬系统
salary_ratio_vs_marketFloat薪资市场分位(0.8=80分位)薪酬调研报告
internal_salary_ratioFloat内部薪资分位(部门内排序)薪酬系统计算
promotion_elapsed_monthsInteger距上次晋升月数自动计算
行为特征attendance_rateFloat过去12月出勤率(0-100%)考勤系统
overtime_frequencyString加班频率(低/中/高)考勤系统计算
internal_transfer_timesInteger内部调岗次数HR系统
组织关系engagement_scoreFloat最近敬业度评分(0-10分)员工调研
flight_risk_flagBoolean离职倾向标记(调研问题触发)员工调研

:敏感字段(薪资、ID等)存储时采用 AES-256加密,访问需双重权限验证


二、数据分析详细规则

(采用SQL+Python双引擎实现)

1. 核心标签计算规则

标签类型标签名计算规则输出类型
绩效分析绩效稳定性(perf_rating_2021*0.2 + perf_rating_2022*0.3 + perf_rating_2023*0.5) * (1 - STD(三年评分)/5)数值(0-5)
绩效趋势CASE WHEN perf_rating_2023 > perf_rating_2022 THEN '上升' ELSE '下降' END字符串
能力评估技能匹配度(核心技能达标数 / 岗位必备技能数) * 100 (达标=掌握度≥3)百分比
技能稀缺性IF(核心技能市场溢价>30%, '高稀缺', '普通') (溢价数据来自外部API)字符串
发展潜力高潜可信度IF(high_potential_flag AND 绩效稳定性>4.0 AND key_project_count>=2, '确认高潜', '待观察')字符串
流失风险风险分(0.4*(1-salary_ratio_vs_market) + 0.3*(1-engagement_score/10) + 0.2*(promotion_elapsed_months/24) + 0.1*IF(flight_risk_flag,1,0))*100数值(0-100)
风险等级CASE WHEN 风险分<30 THEN '低' WHEN 风险分<70 THEN '中' ELSE '高' END字符串
价值贡献团队影响力(mentor_experience*0.6 + key_project_count*0.4) * IF(certification_count>3, 1.2, 1)数值(0-10)

2. 自动化处理逻辑

# 每日定时计算任务(Python伪代码)
def calculate_employee_tags():
    # 从数据库获取原始数据
    raw_data = db.query("SELECT * FROM employee_raw_data")
    
    for emp in raw_data:
        # 计算复合指标
        risk_score = 0.4*(1-emp.salary_ratio) + 0.3*(1-emp.engagement/10) 
                   + 0.2*(emp.promo_months/24) + 0.1*(1 if emp.flight_risk else 0)
        
        # 生成标签
        tags = {
            "perf_stability": calc_perf_stability(emp),
            "skill_match": min(100, emp.skills_mastered / emp.required_skills * 100),
            "risk_level": "高" if risk_score > 70 else ("中" if risk_score > 30 else "低")
        }
        
        # 存入分析结果表
        db.insert("employee_tags", 
                  employee_id=emp.id, 
                  update_date=today,
                  **tags)

# 每天凌晨2点执行
schedule.every().day.at("02:00").do(calculate_employee_tags)

三、画像全部维度体系

共6大维度18个分析点

维度分析指标说明
基础画像岗位价值定位基于职级+薪资的市场定位(核心骨干/专业贡献者等)
组织归属路径部门变更历史+汇报线图谱
能力雷达硬技能矩阵核心技能与掌握度雷达图
技能发展建议AI生成的技能提升路径(如“需加强云计算认证”)
绩效图谱绩效趋势曲线近三年评分折线图+部门对比
关键成就摘要自动提取的成就清单(最多3条)
发展潜力高潜成长路径高潜标识+发展里程碑(晋升/项目/导师经历)
继任准备度关键岗位胜任力评分(需HR预设目标岗位)
风险预警流失风险卡片风险分+主要影响因素(如“薪资低于市场20%”)
稳定性历史记录出勤异常记录+调岗频率
组织价值团队贡献热力图在部门内的贡献度排名(前20%/中位/后20%)
文化契合度基于调研的价值观匹配评分

动态衍生维度

  • 战略技能缺口:当公司新增“AI工程师”岗位时,自动标注匹配员工

  • 并购整合标记:在收购事件后6个月内特殊跟踪被收购公司员工


四、输出结果详细示例

1. 高层PDF报告(个人版)

                 员工画像报告 - 张伟(ID:A10086)
===========================================================
【基础定位】云计算事业部 | 高级架构师(P8) | 司龄5年2月
-----------------------------------------------------------
■ 岗位价值:核心骨干(薪资位于市场P75分位)
■ 汇报关系:汇报给李明(CTO办公室)

【核心指标雷达图】
 绩效稳定性:★★★★☆ (4.2/5.0)   技能匹配度:92%
 流失风险:中(58分) ███████░░░   团队影响力:8.3/10.0

【能力矩阵】
 核心技能: 
   Kubernetes ★★★★★   云原生架构 ★★★★☆   
   AI推理优化 ★★★☆☆ (建议提升)
 认证证书: AWS专家级 x2 | 阿里云MVP

【风险预警】
 ! 主要风险因素:
   - 薪资竞争力:低于市场P75水平12%
   - 晋升停滞:已36个月未晋升
   ! 外部动态:最近更新LinkedIn个人资料

【发展建议】
 1. 薪酬调整:建议Q3前调整至市场P85水平(+18%)
 2. 晋升规划:符合P9晋升条件,建议启动答辩
 3. 能力培养:推荐参加“AIGC架构师训练营”

 2. 实时预警推送(钉钉/邮件)

【员工画像系统预警】
员工:王芳(ID:B20045)
岗位:AI实验室首席科学家
风险等级:高(82分)

■ 风险因素:
  - 薪资低于市场P90水平28%
  - 竞对近期高薪挖角同岗位
  - 连续2次缺席核心会议

■ 紧急建议:
  1. 48小时内安排保留面谈
  2. 批准特别调薪额度(上限+35%)
  3. 指派HRVP直接跟进

> 完整报告:http://insight.company.com/profile/B20045 

3. 人才九宫格输出

绩效 vs 潜力矩阵(云计算事业部):
       高潜力     中潜力     低潜力
高绩  [赵Ⅹ]     [钱X]     [孙X]  
      [李X]              
中绩            [周X]     [吴X]  
                [郑X]      
低绩                    [王X]

■ 关键发现:
  - 高潜高风险:赵X(需晋升加薪)
  - 绩效衰退:王X(启动PIP计划)

数据流闭环验证 

此方案实现从原始数据→分析规则→维度构建→价值输出的完整闭环,所有字段和规则可直接用于开发,输出形式均经过上市公司验证满足高层需求。 

   猜你喜欢

工地视频考勤打卡(电子工牌)数据结构

跑团小程序带来的意外收益...

我是怎样让校车运营收入翻倍的

记录开发蓝牙充电宝小程序的历程

网约巴士旅游专线平台搭建历程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿斌_bingyu709

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值