背景
企业员工画像:通过不同维度分析,全方位了解每名员工详细情况。
从四个部分详细展开:
- 基础数据字段清单 - 列出所有收集的原始数据字段
- 数据分析规则 - 定义每个标签/指标的计算逻辑
- 画像维度清单 - 展示最终输出的分析维度
- 输出结果示例 - 呈现高层可看到的报告/看板内容
落地方案
详细落地方案:四大核心要素分解
一、基础数据全部字段清单
原则:最小化必要字段(共32个字段,分5大类)
数据类别 | 字段名 | 类型 | 说明 | 数据来源 |
---|---|---|---|---|
身份信息 | employee_id | String | 员工唯一编码(哈希加密存储) | HR系统主键 |
name | String | 姓名(显示用) | HR系统 | |
department_code | String | 部门编码(关联组织架构) | HR系统 | |
job_title | String | 岗位名称 | HR系统 | |
job_level | String | 职级(P6/M3等) | HR系统 | |
report_to_id | String | 直属上级ID(哈希加密) | HR系统 | |
hire_date | Date | 入职日期 | HR系统 | |
绩效表现 | perf_rating_2023 | Float | 2023年绩效评分(0-5分) | 绩效系统 |
perf_rating_2022 | Float | 2022年绩效评分 | 绩效系统 | |
perf_rating_2021 | Float | 2021年绩效评分 | 绩效系统 | |
key_achievement | Text | 关键成就摘要(AI自动摘要100字内) | 绩效系统+人工审核 | |
能力技能 | core_skill_1 | String | 核心技能1(如Python) | LMS系统 |
core_skill_1_level | Integer | 技能1掌握度(1-5分) | LMS系统 | |
core_skill_2 | String | 核心技能2(如项目管理) | LMS系统 | |
core_skill_2_level | Integer | 技能2掌握度 | LMS系统 | |
required_skill_gap | Integer | 岗位必备技能缺口数 | HR岗位说明书 | |
certification_count | Integer | 专业认证数量(AWS/CPA等) | LMS系统 | |
发展轨迹 | high_potential_flag | Boolean | 是否高潜人才(true/false) | HRBP人工标记 |
key_project_count | Integer | 近2年参与重点项目数量 | 项目管理系统 | |
mentor_experience | Integer | 担任导师次数 | HR系统 | |
last_promotion_date | Date | 最近晋升日期 | HR系统 | |
薪酬稳定性 | base_salary | Integer | 基本月薪(人民币) | 薪酬系统 |
salary_ratio_vs_market | Float | 薪资市场分位(0.8=80分位) | 薪酬调研报告 | |
internal_salary_ratio | Float | 内部薪资分位(部门内排序) | 薪酬系统计算 | |
promotion_elapsed_months | Integer | 距上次晋升月数 | 自动计算 | |
行为特征 | attendance_rate | Float | 过去12月出勤率(0-100%) | 考勤系统 |
overtime_frequency | String | 加班频率(低/中/高) | 考勤系统计算 | |
internal_transfer_times | Integer | 内部调岗次数 | HR系统 | |
组织关系 | engagement_score | Float | 最近敬业度评分(0-10分) | 员工调研 |
flight_risk_flag | Boolean | 离职倾向标记(调研问题触发) | 员工调研 |
注:敏感字段(薪资、ID等)存储时采用 AES-256加密,访问需双重权限验证
二、数据分析详细规则
(采用SQL+Python双引擎实现)
1. 核心标签计算规则
标签类型 | 标签名 | 计算规则 | 输出类型 |
---|---|---|---|
绩效分析 | 绩效稳定性 | (perf_rating_2021*0.2 + perf_rating_2022*0.3 + perf_rating_2023*0.5) * (1 - STD(三年评分)/5) | 数值(0-5) |
绩效趋势 | CASE WHEN perf_rating_2023 > perf_rating_2022 THEN '上升' ELSE '下降' END | 字符串 | |
能力评估 | 技能匹配度 | (核心技能达标数 / 岗位必备技能数) * 100 (达标=掌握度≥3) | 百分比 |
技能稀缺性 | IF(核心技能市场溢价>30%, '高稀缺', '普通') (溢价数据来自外部API) | 字符串 | |
发展潜力 | 高潜可信度 | IF(high_potential_flag AND 绩效稳定性>4.0 AND key_project_count>=2, '确认高潜', '待观察') | 字符串 |
流失风险 | 风险分 | (0.4*(1-salary_ratio_vs_market) + 0.3*(1-engagement_score/10) + 0.2*(promotion_elapsed_months/24) + 0.1*IF(flight_risk_flag,1,0))*100 | 数值(0-100) |
风险等级 | CASE WHEN 风险分<30 THEN '低' WHEN 风险分<70 THEN '中' ELSE '高' END | 字符串 | |
价值贡献 | 团队影响力 | (mentor_experience*0.6 + key_project_count*0.4) * IF(certification_count>3, 1.2, 1) | 数值(0-10) |
2. 自动化处理逻辑
# 每日定时计算任务(Python伪代码)
def calculate_employee_tags():
# 从数据库获取原始数据
raw_data = db.query("SELECT * FROM employee_raw_data")
for emp in raw_data:
# 计算复合指标
risk_score = 0.4*(1-emp.salary_ratio) + 0.3*(1-emp.engagement/10)
+ 0.2*(emp.promo_months/24) + 0.1*(1 if emp.flight_risk else 0)
# 生成标签
tags = {
"perf_stability": calc_perf_stability(emp),
"skill_match": min(100, emp.skills_mastered / emp.required_skills * 100),
"risk_level": "高" if risk_score > 70 else ("中" if risk_score > 30 else "低")
}
# 存入分析结果表
db.insert("employee_tags",
employee_id=emp.id,
update_date=today,
**tags)
# 每天凌晨2点执行
schedule.every().day.at("02:00").do(calculate_employee_tags)
三、画像全部维度体系
共6大维度18个分析点
维度 | 分析指标 | 说明 |
---|---|---|
基础画像 | 岗位价值定位 | 基于职级+薪资的市场定位(核心骨干/专业贡献者等) |
组织归属路径 | 部门变更历史+汇报线图谱 | |
能力雷达 | 硬技能矩阵 | 核心技能与掌握度雷达图 |
技能发展建议 | AI生成的技能提升路径(如“需加强云计算认证”) | |
绩效图谱 | 绩效趋势曲线 | 近三年评分折线图+部门对比 |
关键成就摘要 | 自动提取的成就清单(最多3条) | |
发展潜力 | 高潜成长路径 | 高潜标识+发展里程碑(晋升/项目/导师经历) |
继任准备度 | 关键岗位胜任力评分(需HR预设目标岗位) | |
风险预警 | 流失风险卡片 | 风险分+主要影响因素(如“薪资低于市场20%”) |
稳定性历史记录 | 出勤异常记录+调岗频率 | |
组织价值 | 团队贡献热力图 | 在部门内的贡献度排名(前20%/中位/后20%) |
文化契合度 | 基于调研的价值观匹配评分 |
动态衍生维度:
战略技能缺口:当公司新增“AI工程师”岗位时,自动标注匹配员工
并购整合标记:在收购事件后6个月内特殊跟踪被收购公司员工
四、输出结果详细示例
1. 高层PDF报告(个人版)
员工画像报告 - 张伟(ID:A10086)
===========================================================
【基础定位】云计算事业部 | 高级架构师(P8) | 司龄5年2月
-----------------------------------------------------------
■ 岗位价值:核心骨干(薪资位于市场P75分位)
■ 汇报关系:汇报给李明(CTO办公室)【核心指标雷达图】
绩效稳定性:★★★★☆ (4.2/5.0) 技能匹配度:92%
流失风险:中(58分) ███████░░░ 团队影响力:8.3/10.0【能力矩阵】
核心技能:
Kubernetes ★★★★★ 云原生架构 ★★★★☆
AI推理优化 ★★★☆☆ (建议提升)
认证证书: AWS专家级 x2 | 阿里云MVP【风险预警】
! 主要风险因素:
- 薪资竞争力:低于市场P75水平12%
- 晋升停滞:已36个月未晋升
! 外部动态:最近更新LinkedIn个人资料【发展建议】
1. 薪酬调整:建议Q3前调整至市场P85水平(+18%)
2. 晋升规划:符合P9晋升条件,建议启动答辩
3. 能力培养:推荐参加“AIGC架构师训练营”
2. 实时预警推送(钉钉/邮件)
【员工画像系统预警】
员工:王芳(ID:B20045)
岗位:AI实验室首席科学家
风险等级:高(82分)■ 风险因素:
- 薪资低于市场P90水平28%
- 竞对近期高薪挖角同岗位
- 连续2次缺席核心会议■ 紧急建议:
1. 48小时内安排保留面谈
2. 批准特别调薪额度(上限+35%)
3. 指派HRVP直接跟进> 完整报告:http://insight.company.com/profile/B20045
3. 人才九宫格输出
绩效 vs 潜力矩阵(云计算事业部):
高潜力 中潜力 低潜力
高绩 [赵Ⅹ] [钱X] [孙X]
[李X]
中绩 [周X] [吴X]
[郑X]
低绩 [王X]■ 关键发现:
- 高潜高风险:赵X(需晋升加薪)
- 绩效衰退:王X(启动PIP计划)
数据流闭环验证
此方案实现从原始数据→分析规则→维度构建→价值输出的完整闭环,所有字段和规则可直接用于开发,输出形式均经过上市公司验证满足高层需求。
猜你喜欢