题目描述:
世界上有10种人,一种懂二进制,一种不懂。那么你知道两个int32整数m和n的二进制表达,有多少个位(bit)不同么?
public int countBitDiff(int m, int n) {
int count=0;
String s=Integer.toBinaryString(m^n);//异或后统计1的个数
for(int i=0;i<s.length();i++)
if(s.charAt(i)=='1')
count++;
return count;
}
这个比较笨啊,查了一下可以快速统计正整数 dif 中1的个数。如下:
//统计一个整数dif含有多少个1;
while(dif!=0){
dif=dif&(dif-1);
cnt++;
}
这段代码的精髓就是在这一句: dif=dif&(dif-1)
那么这句语句到底起到什么作用呢?看下面的分析
假设dif=X1X2……Xn-1Xn,其中Xi(1≤i≤n)为1或0
不妨设Xi是最右边的1,那么dif就可以写成如下的形式
dif=X1X2……Xi-1Xi0……0,其中(1≤i≤n),Xi后面有n-i个0
因为Xi=1,所以dif=X1X2……Xi-110……0,其中(1≤i≤n),1后面有n-i个0
则dif-1=X1X2……Xi-101……1,其中(1≤i≤n),0后面有n-i个1
则difAnd (dif-1)=X1X2……Xi-100……0,其中(1≤i≤n),Xi-1后面有n-i+1个0
因此,dif &(dif-1)的效果把最右边的1变成0
在上面的代码中,每把最右边的1变成0,则统计数加1,直到所有的1变成0为止。