天马行空的博客

人生苦短,我用python

向量组的秩是什么?

@ 向量组的秩是什么? 向量组的秩是什么? 通俗的说,就是把这一组向量中的垃圾向量踢出后剩下的高品质向量的个数,假设这一组有5个向量,踢出两个垃圾,还剩3个。 那么这个向量组的秩就是3。那什么是垃圾向量呢?就是能被别人线性表示的向量。比如说向量α1能被α2和α3线性表示,也就是它的工作能被别人取代...

2019-03-24 15:38:44

阅读数 271

评论数 0

语法糖

语法糖(Syntactic sugar),也译为糖衣语法,是由英国计算机科学家彼得·约翰·兰达(Peter J. Landin)发明的一个术语,指计算机语言中添加的某种语法,这种语法对语言的功能并没有影响,但是更方便程序员使用。通常来说使用语法糖能够增加程序的可读性,从而减少程序代码出错的机会。 ...

2019-02-26 11:34:02

阅读数 16

评论数 0

我见过最清晰的–理解梯度,散度,旋度

我见过最清晰的–理解梯度,散度,旋度 梯度: 运算的对像是纯量,运算出来的结果会是向量在一个纯量场中, 梯度的计算结果会是"在每个位置都算出一个向量,而这个向量的方向会是在任何一点上从其周围(极接近的周围,学过微积分该知道甚么叫极限吧?)纯量值最小处指向周围纯量值最大处.而这个向...

2018-12-20 14:35:14

阅读数 6688

评论数 1

BatchNormalization、LayerNormalization、InstanceNorm、GroupNorm、SwitchableNorm总结

https://blog.csdn.net/liuxiao214/article/details/81037416

2018-11-30 10:02:09

阅读数 93

评论数 0

数据归一化和两种常用的归一化方法

数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。以下是两种常用的归...

2018-11-29 19:39:13

阅读数 222

评论数 0

TensorFlow中的小知识:tf.flags.DEFINE_xxx()

内容包含如下几个我们经常看到的几个函数: ①tf.flags.DEFINE_xxx() ②FLAGS = tf.flags.FLAGS ③FLAGS._parse_flags() 简单的说: 用于帮助我们添加命令行的可选参数。 也就是说利用该函数我们可以实现在命令行中选择需要设定的参数来运行程序,...

2018-11-06 21:47:37

阅读数 461

评论数 0

蒙特卡洛方法到底有什么用(转)

链接 蒙特卡洛方法(Monte Carlo method,也有翻译成“蒙特卡罗方法”)是以概率和统计的理论、方法为基础的一种数值计算方法,将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解,故又称随机抽样法或统计试验法。上述就是蒙特卡洛方法的基本概念,比较抽象,...

2018-06-07 09:13:08

阅读数 3657

评论数 0

KL散度的理解

KL散度的理解 标签(空格分隔): 机器学习 linbin 2018-05-29 KL散度( KL divergence) 全称:Kullback-Leibler Divergence 用途:比较两个概率分布的接近程度 在统计应用中,我们经常需要用一个简单的,近似的概率分布...

2018-05-29 09:32:15

阅读数 1407

评论数 0

EEG检查的意义(转)

EEG是脑细胞功能变化的标志,能反映脑性疾病时脑功能障碍与否,但不能反映其疾病程度。一份正常EEG并不总是意味着脑功能正常,一份异常EEG、并不一定意味着脑功能异常。一种脑性疾病可产生多种形态的EEG异常,一种EEG异常可由多种脑性疾病引起。因此必须结合临床和其他检查,EEG才能在诊断上起参考作用...

2018-05-17 15:57:03

阅读数 318

评论数 0

拉格朗日乘数法和KKT条件的直观解释

拉格朗日乘数法和KKT条件的直观解释 标签(空格分隔): 机器学习 linbin 2018-05-10 Abstract 在SVM的推导中,最优化问题是其中的核心,这里我们简单介绍下最优化问题,特别是带有约束的最优化问题,并且引入拉格朗日乘数法和广义拉格朗日乘数法,介绍并且直观解释...

2018-05-11 00:06:38

阅读数 4217

评论数 1

GPU课程20180510

GPU加速的科学发现 Tags : GPU 爱因斯坦一百年前的预言 强度极其微弱,探测困难 几乎不与物质发生作用 从第一次引力波探测到第一次“引力波-电磁信号”协同观测 引力波天文学的开启 新的挑战 “引力波-电磁”(GW-EM)信号的协同观测 了解波源及其相关的物理过程 ...

2018-05-10 11:41:53

阅读数 107

评论数 0

训练分类器为什么要用cross entropy loss而不能用mean square error loss?

对于多分类的标签(即教师信号),从本质上看,通过One-hot操作,就是把具体的标签(Label)空间,变换到一个概率测度空间(设为 p),如[1,0,0](表示它是第一个品类)。可以这样理解这个概率,如果标签分类的标量输出为1(即概率为100%),其它值为0(即概率为0%)。 而对于多分类问题...

2018-05-09 23:54:11

阅读数 1280

评论数 0

拉格朗日乘子法如何理解

拉格朗日乘子法如何理解? 拉格朗日乘数法(Lagrange multiplier)有很直观的几何意义。举个2维的例子来说明:假设有自变量x和y,给定约束条件g(x,y)=c,要求f(x,y)在约束g下的极值。我们可以画出f的等高线图,如下图。此时,约束g=c由于只有一个自由度,因此也是图中的一条...

2018-05-09 19:24:17

阅读数 423

评论数 0

卷积神经网络中用1-1 卷积核的作用

卷积神经网络中用1*1 卷积核的作用 linbin 标签(空格分隔): 卷积神经网络 优点: 可以降低特征图的维数,防止参数过多,有利于增加深层网络的宽度 增加模型深度,一定程度上提升模型的表征能 Inception 下图是Inception的结构,尽管也有不同的...

2018-05-09 16:12:13

阅读数 861

评论数 1

单词表_芝士

单词表 Tags: 英语学习 Day 1 the box 5/9/2018 1:04:03 PM ballon 气球 politician 政客 ridiculous 荒谬的;可笑的 lever 拉杆 joke 笑话 pull 拉 direction 方向 disappear 消失 d...

2018-05-09 14:10:05

阅读数 94

评论数 0

图像检索研究进展:浅层、深层特征及特征融合 笔记

图像检索研究进展:浅层、深层特征及特征融合 欢迎使用Markdown编辑器写博客 本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦: Markdown和扩展Markdown简洁的语法 代码块高亮 图片链接和图片上传 LaTex数学公式 UML序列...

2018-04-22 14:50:06

阅读数 1143

评论数 0

tensorflow 学习 使用flags定义命令行参数

tf定义了tf.app.flags,用于支持接受命令行传递参数,相当于接受argv。 import tensorflow as tf 第一个是参数名称,第二个参数是默认值,第三个是参数描述 tf.app.flags.DEFINE_string('str_name', 'def_v_1',&...

2018-04-17 15:20:52

阅读数 332

评论数 0

Tensorflow的padding方法

Tensorflow的padding方法 The TensorFlow Convolution example gives an overview about the difference between SAME and VALID : For the SAME padding, the ...

2018-04-17 13:26:56

阅读数 204

评论数 0

机器学习中precision和accuracy区别

机器学习中precision和accuracy区别 一些术语 对于一个二分类问题,我们定义如下指标: TP:True Positive,即正确预测出的正样本个数 FP:False Positive,即错误预测出的正样本个数(本来是负样本,被我们预测成了正样本) TN:True Nega...

2018-04-13 16:11:23

阅读数 523

评论数 0

add_to_collection的用法

1.add_to_collection add_to_collectio为Graph的一个方法,可以简单地认为Graph下维护了一个字典,key为name,value为list,而add_to_collection就是把变量添加到对应key下的list中 sess=tf.Interact...

2018-04-11 17:01:29

阅读数 485

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭