第五周--python,尝试word2vec结合k-means实现关键字聚类

本文介绍了如何使用word2vec对关键词进行向量化,然后结合k-means进行聚类。通过详细步骤和参考链接,展示了将自然语言处理技术应用于关键字分类的过程。
摘要由CSDN通过智能技术生成

  对于关键词,句子的聚类,一开始真的是找不到头脑,后来了解到使用word2vec可以让关键字实现向量化,实现了向量化之后,再使用k-means聚类不就可以了吗。

  1.结合word2vec进行关键字向量化

  参考连接:https://blog.csdn.net/qq_28840013/article/details/89681499

  这篇文章是讲解如何初步使用word2vec,讲解得很详细,就不多解释,

  代码尝试:

from gensim.models import word2vec
import gensim

#获取句子
sentences=word2vec.Text8Corpus("kjcg.txt")
# print(sentences)

#sg=1是skip—gram算法,对低频词敏感,默认sg=0为CBOW算法
#size是神经网络层数,值太大则会耗内存并使算法计算变慢,一般值取为100到200之间。
#window是句子中当前词与目标词之间的最大距离,3表示在目标词前看3-b个词,后面看b个词(b在0-3之间随机)
#min_count是对词进行过滤,频率小于min-count的单词则会被忽视,默认值为5。
#negativ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值