题链:https://leetcode-cn.com/problems/reverse-pairs/
我的思路:先离散化,然后倒着找,对于每个i,就看一下有多少a[j]<a[i]/2就好。需要注意的是有有可能找到的j是最后一个或2*a[j]==a[i],这两种情况都要减一。
#define ll long long
const int N = 5e4+10;
int sum[N];
int lowbit(int x){ return x&(-x); }
int ask(int x){
int ans=0;
while(x){
ans+=sum[x];
x-=lowbit(x);
}
return ans;
}
void add(int x,int n){
while(x<=n){
sum[x]++;
x+=lowbit(x);
}
return ;
}
class Solution {
public:
int reversePairs(vector<int>& a) {
int n=a.size();
if(n==0) return 0;
ll b[n+1],ans=0;
for(int i=0;i<n;i++)
b[i+1]=a[i],sum[i+1]=0;
sort(b+1,b+1+n);
int nn = unique(b+1,b+1+n)-(b+1);
for(int i=n-1;i>=0;i--){
int pos=lower_bound(b+1,b+1+nn,a[i]/2)-b;
if(pos>nn) pos--;
if(1LL*a[i]<=2LL*b[pos])
pos--;
ans+=ask(pos);
pos=lower_bound(b+1,b+1+nn,a[i])-b;
add(pos,nn);
}
return ans;
}
};
官方题解:正着找,对于每个a[i],找前面所有大于2*a[i]的数,这里把a[i]和2*a[i]都离散化,那么a[i]对于答案的贡献就为ask(maxn)-ask(mp[2*a[i]]) (其中maxn为离散化后数的个数)。这样离散化时间、空间复杂度都提高很多,但便于理解,实现也不易出错。
#define ll long long
const int N = 1e5+10;
int sum[N];
set<ll>::iterator it;
int lowbit(int x){ return x&(-x); }
int ask(int x){
int ans=0;
while(x){
ans+=sum[x];
x-=lowbit(x);
}
return ans;
}
void add(int x,int n){
while(x<=n){
sum[x]++;
x+=lowbit(x);
}
return ;
}
class Solution {
public:
int reversePairs(vector<int>& a) {
int n=a.size();
if(n==0) return 0;
set<ll> s;
for(int i=0;i<n;i++){
s.insert(a[i]);
s.insert(2LL*a[i]);
}
unordered_map<ll,int> mp;
int id=0;
for(it=s.begin();it!=s.end();it++){
mp[(*it)]=++id;
sum[id]=0;
}
int ans=0;
for(int i=0;i<n;i++){
ans+=(ask(id)-ask(mp[2LL*a[i]]));
add(mp[a[i]],id);
}
return ans;
}
};