LeetCode 每日一题 493. 翻转对 (离散化+树状数组)

题链:https://leetcode-cn.com/problems/reverse-pairs/

我的思路:先离散化,然后倒着找,对于每个i,就看一下有多少a[j]<a[i]/2就好。需要注意的是有有可能找到的j是最后一个或2*a[j]==a[i],这两种情况都要减一

#define ll long long
const int N = 5e4+10;
int sum[N];
int lowbit(int x){ return x&(-x); }
int ask(int x){
    int ans=0;
    while(x){
        ans+=sum[x];
        x-=lowbit(x);
    }
    return ans;
}
void add(int x,int n){
    while(x<=n){
        sum[x]++;
        x+=lowbit(x);
    }
    return ;
}
class Solution {
public:
    int reversePairs(vector<int>& a) {
        int n=a.size();
        if(n==0) return 0;
        ll b[n+1],ans=0;
        for(int i=0;i<n;i++)
            b[i+1]=a[i],sum[i+1]=0;
        sort(b+1,b+1+n);
        int nn = unique(b+1,b+1+n)-(b+1);
        for(int i=n-1;i>=0;i--){
            int pos=lower_bound(b+1,b+1+nn,a[i]/2)-b;
            if(pos>nn) pos--;
            if(1LL*a[i]<=2LL*b[pos])
                pos--;
            ans+=ask(pos);
            pos=lower_bound(b+1,b+1+nn,a[i])-b;
            add(pos,nn);
        }
        return ans;
    }
};

官方题解:正着找,对于每个a[i],找前面所有大于2*a[i]的数,这里把a[i]2*a[i]都离散化,那么a[i]对于答案的贡献就为ask(maxn)-ask(mp[2*a[i]]) (其中maxn为离散化后数的个数)。这样离散化时间、空间复杂度都提高很多,但便于理解,实现也不易出错。

#define ll long long
const int N = 1e5+10;
int sum[N];
set<ll>::iterator it;
int lowbit(int x){ return x&(-x); }
int ask(int x){
    int ans=0;
    while(x){
        ans+=sum[x];
        x-=lowbit(x);
    }
    return ans;
}
void add(int x,int n){
    while(x<=n){
        sum[x]++;
        x+=lowbit(x);
    }
    return ;
}
class Solution {
public:
    int reversePairs(vector<int>& a) {
        int n=a.size();
        if(n==0) return 0;
        set<ll> s;
        for(int i=0;i<n;i++){
            s.insert(a[i]);
            s.insert(2LL*a[i]);
        }
        unordered_map<ll,int> mp;
        int id=0;
        for(it=s.begin();it!=s.end();it++){
            mp[(*it)]=++id;
            sum[id]=0;
        }
        int ans=0;
        for(int i=0;i<n;i++){
            ans+=(ask(id)-ask(mp[2LL*a[i]]));
            add(mp[a[i]],id);
        }
        return ans;
    }
};

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值