欧洲杯赛况@20240620

点击标题下「蓝色微信名」可快速关注

这个比赛日展开了小组赛的第二轮较量,克罗地亚和阿尔巴尼亚,都是1战1负,次轮交战,双方谁都输不起,从实力上,克罗地亚占优,莫德里奇、佩里西奇等老将助阵,但剧本和第一场几乎一样,阿尔巴尼亚开场进球,克罗地亚2分钟反超比分,但这次出现了剧情的反转,补时阶段,阿尔巴尼亚顽强拼搏,绝杀了,2:2,让克罗地亚到手的三分变成了一分,同时让这两支球队争夺小组第三充满了悬念,

d0bc0d974943248c2e682c67366be33d.png

从技术统计上,克罗地亚占据了主动,但是阿尔巴尼亚场上的效率更高,斗志上更加强,如果不是几次机会没抓住,很可能就不是平局的比分了,而克罗地亚虽然较上场对阵西班牙的全面被动有所改观,但中前场的控制能力,还是不如从前,锋线把握机会的能力也是很有限,两个丢球,都属于后防线盯人不紧,达利奇需要找出更好的解决方案,

控球率:67%-33%

射门数:22-15

射正数:10-7

角球:3-1

越位:0-4

犯规:15-11

黄牌:1-3

传球数:634-311

传球成功率:90%-79%

抢断:17-11

拦截:14-9

解围:7-26

东道主德国队可以说兵不血刃地2:0击退匈牙利,成为首支晋级到淘汰赛的球队,通过这两场比赛展现出来的控制力,确实让球迷媒体们对德国队能否本土夺冠产生了兴趣,但说实在的,德国还未面对更强的对手,

85285c242f5ab03c6b829a1e716e0edd.png

从数据统计上,德国碾压匈牙利,虽然有索博斯洛伊坐镇,但明显是不够的,下场面对苏格兰,匈牙利仍有机会争取出线机会,而德国队需要关注的则是淘汰赛阶段碰到更强对手,能否发挥出现在的这种状态,

控球率:70%-30%

射门数:19-11

射正数:7-4

角球:11-7

越位:0-1

犯规:12-10

黄牌:2-2

传球数:718-308

传球成功率:93%-80%

抢断:17-13

拦截:6-5

解围:20-31

瑞士没能战胜苏格兰,确实有些意外,没能提前晋级,但至少能确保一个小组第三的出线名额,下场面对无欲无求的德国队,就看瑞士的发挥,苏格兰如果想超越瑞士还得多进球,

724a531f1fddd02f1b8f194d0f2b1191.png

从数据上看,双方势均力敌,苏格兰从1:5德国的阴影中出来了,下场面对匈牙利,还是可以有出线机会的,

控球率:49%-51%

射门数:12-11

射正数:3-4

角球:5-8

越位:0-5

犯规:11-11

黄牌:3-2

传球数:374-419

传球成功率:77%-81%

抢断:8-9

拦截:2-8

解围:18-23

昨天无奖竞猜

克罗地亚3:1阿尔巴尼亚(实际2:2)

德国2:0匈牙利(实际2:0)

苏格兰1:2瑞士(实际1:1)

今日无奖竞猜,各位可以将比分打到文章末尾,

斯洛文尼亚1:1塞尔维亚

丹麦0:2英格兰

西班牙1:1意大利

本届欧洲杯相关文章,

欧洲杯数据控@20240619

欧洲杯赛况@20240619

欧洲杯数据控@20240618

欧洲杯赛况@20240618

欧洲杯数据控@20240617

欧洲杯赛况@20240617

欧洲杯数据控@20240616

欧洲杯赛况@20240616

欧洲杯数据控@20240615

欧洲杯赛况@20240615

德国欧洲杯观战掌中宝

如果您认为这篇文章有些帮助,还请不吝点下文章末尾的"点赞"和"在看",或者直接转发朋友圈,

fe76715cbeebc8db0d6705f7ee01aa96.png

资源下载链接为: https://pan.quark.cn/s/ddc62c5d4a5d Windows Mobile 是微软在 0200 年代至 2010 年代初推出的移动操作系统,曾广泛应用于智能手机和平板电脑。开发者可以借助各种库和框架为其开发功能丰富的应用,其中 “32feet.NET” 是一个开源的 .NET 库,专为 .NET Framework 和 .NET Compact Framework 提供蓝牙开发支持。它包含多个命名空间,例如 InTheHand.Devices.Bluetooth、InTheHand.Net.Personal 和 InTheHand.Phone.Bluetooth,用于实现蓝牙设备交互功能。 InTheHand.Devices.Bluetooth 命名空间用于执行基础蓝牙操作,比如扫描附近设备、建立连接以及发现蓝牙服务等。InTheHand.Net.Personal 提供了更高级的功能,例如创建个人区域网络(PAN)、文件传输和串行端口模拟,便于开发者开发跨设备的数据共享应用。而 InTheHand.Phone.Bluetooth 主要针对 Windows Phone 平台,支持蓝牙配对、消息收发和蓝牙耳机控制等功能,不过由于 Windows Mobile 已停止更新,该命名空间更多适用于旧设备或项目。 压缩包中的文件列表看似是维基页面的渲染文件,可能是关于 32feet.NET 的使用教程、API 参考或示例代码。文件名如 13632.html、563803.html 等可能是页面 ID,涵盖蓝牙设备搜索、连接和数据传输等不同主题。 使用 32feet.NET 进行蓝牙开发时,开发者需要注意以下几点:首先,确保开发环境已安装 .NET Framework 或 .NET Compact Framework,以及 32feet.NET
资源下载链接为: https://pan.quark.cn/s/d8a2bf0af1ac Mask R-CNN 是一种在实例分割任务中表现优异的深度学习模型,它融合了 Faster R-CNN 的目标检测功能和 CNN 的像素级分类能力,能够实现图像中每个目标的定位、识别与分割。本指南将指导你如何使用 Mask R-CNN 训练自定义数据集。 你需要准备包含图像(JPEG 或 PNG 格式)和标注文件(XML 或 JSON 格式)的数据集,标注文件需包含物体类别、坐标和掩模信息。数据集应按照 COCO 标准组织,分为训练集、验证集和可选的测试集。可以使用工具如 COCO API 或 labelme 将原始数据转换为 COCO 格式,并确保图像文件名与标注文件名一致且在同一目录下。通常按 8:2 或 9:1 的比例划分训练集和验证集。 从提供的压缩包中安装所需库。运行 pip install -r requirements.txt 安装依赖,包括 TensorFlow、Keras、Cython、COCO API 等。 修改 train_test.py 和 test_model.py 中的路径,使其指向你的数据集目录,确保 ROOT_DIR 指向数据集根目录,ANNOTATION_DIR 指向标注文件所在目录。在 config.py 中根据硬件资源和训练目标调整学习率、批大小、迭代次数等参数。 运行 train_test.py 开始训练。训练时会加载预训练权重并进行微调,期间会定期保存模型,便于评估和恢复。 使用 test_model.py 或 test.py 对模型进行验证和测试。这些脚本会加载保存的模型权重,将其应用于新图像并生成预测结果。 预测结果为二进制掩模,需进一步处理为可读图像。可借助 COCO API 或自定义脚本将掩模合并到原始图像上,生成可视化结果。 若模型性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值