大风天气等级和避险的了解

点击标题下「蓝色微信名」可快速关注

根据北京市气象台最新消息,11日下午至13日,北京将遭遇一次极端大风强降温天气,足球比赛马拉松都延期了,各位朋友们还是要多注意,可以通过以下图文了解下大风等级,以及预防风险的一些方法,有备无患。

图片

图片

图片

如果您认为这篇文章有些帮助,还请不吝点下文章末尾的"点赞"和"在看",或者直接转发朋友圈,

图片

近期更新的文章:

本周六南京见!传统技术栈替换和AI浪潮正当时,面向未来国产数据库如何选择?

MOS即将启用双因子认证

路口掉头需要不需要等红灯?

公众号的智能问答功能

MySQL 9.2的新特性 —— Routing Guidelines

热文鉴赏:

中国队“自己的”世界杯

你不知道的C罗-Siu庆祝动作

架构设计的15个关键概念

大阪环球影城避坑指南和功略

推荐一篇Oracle RAC Cache Fusion的经典论文

"红警"游戏开源代码带给我们的震撼

文章分类和索引:

公众号1700篇文章分类和索引

基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值