“鸣“是什么偏旁?

点击标题下「蓝色微信名」可快速关注

孩子提了个问题,说"鸣"字到底是"口"字旁还是"鸟"字旁?

乍看有些懵,按照汉字部首提取的“左取优先”原则,当左右结构汉字的两侧均可作为部首时,优先取左侧部件为部首。按照字的表意功能组合逻辑,从造字原理看,"口"作为表意偏旁,直接指向"鸣"的核心含义——通过口腔发出声音。右侧的"鸟"作为表意兼表音的部件,既提示鸟类鸣叫的常见场景,也承载部分表音功能(古音中"鸣"与"鸟"存在音近关系),这种组合方式属于典型的形声字结构,其中形旁(口)承担主要表意作用。

但究竟是不是?

于是问了DeepSeek,如下是给的回答:

这个字好像和鸟有关,因为鸟会叫,对吧?所以,我觉得它应该是鸟字旁。可是,老师说要仔细分析,所以我决定好好思考一下。

首先,我得明确什么是“口字旁”和"鸟字旁”。在汉字的部首中,字旁是指放在字的左边的部分,而“口”和“鸟“都是常见的字旁。比如,“口字旁"通常与与口相关的意思有关,比如“吃”、“说”、“呼吸“等等。而“鸟字旁"则通常与鸟类相关,比如“鸟”、“鸣”、“”等等。

那么,"呜”这个字,它的结构是什么样的呢?让我先写下这个字来看看。鸣,左边是一个"鸟"字旁,右边是一个"口"字旁。哦,这样看来,它是由”鸟”和“口"两个部分组成的。这让我有点疑惑,因为它同时包含了“鸟”和“口"两个部分。

DeepSeek

那么,问题来了:是“鸟字旁"还是“口字旁”?根据我刚才的分析,鸣这个字左边是"鸟”,右边是”口”。所以,按照汉字的部首分类,左边的是字旁,右边的是字底。因此,鸣这个字的字旁应该是“鸟字旁”,而不是“口字旁"。

但是,我有点不确定,因为“鸣”的发音是"ming”,而“口"字旁通常与发音相关。所以,我想进一步确认一下。我查了一下汉字部首的相关资料,发现“鸣”确实是以“鸟"作为字旁,而“口”是作为字底的。因此,它属于“鸟字旁”。

不过,我还是有点疑惑,因为"鸣”的发音与"口"字旁似乎也有关系。也许这是因为"鸣"不仅仅代表鸟叫,还与发声有关,所以“口"字作为字底来补充这个意思。

DeepSeek

为了更好地理解,我决定查阅一些相关的汉字部首书籍和在线资源。通过查阅,我发现大多数资料都指出,"鸣"是"鸟字旁",因为它左边的部分是“鸟”。而“口"作为字底,是用来表明发声的意思。

总结一下,虽然"鸣”这个字包含了"口"作为字底,但它的字旁是“鸟”。因此,鸣是鸟字旁,而不是口字旁。

DeepSeek

在这个过程中,我一开始因为"鸣”的发音与”"口"有关联而有些混淆,但通过查阅资料和仔细分析,最终明确了它的部首归属。这让我意识到,汉字的部首分类有时候需要我们仔细观察和分析,不能仅凭发音或部分意思来判断,此外,这个问题也让我对汉字的结构有了更深的了解。汉字不仅仅是单个部分的简单组合,每个部分都有其特定的意义和作用。通过这样的学习,我对汉字的认识更加深入,也激发了我进一步学习汉字部首的兴趣。

总的来说,虽然一开始有些困惑,但通过仔细分析和查阅资料,我终于搞清楚了“吗”"是鸟字旁,而不是口字旁。

DeepSeek

可以看到对这个问题的判断路径和方向,按照DeepSeek所说的,"鸣"是"鸟"字旁,其实老师也是这么讲。

但查了新华字典,发现根据"口"字旁和"鸟"字旁,都可以找到"鸣",说明实操层面,两种偏旁都可以进行检索,可能这就是汉字的奥秘。

如果您认为这篇文章有些帮助,还请不吝点下文章末尾的"点赞"和"在看",或者直接转发朋友圈,

图片

近期更新的文章:

DeepSeek指导改程序

大风天气等级和避险的了解

本周六南京见!传统技术栈替换和AI浪潮正当时,面向未来国产数据库如何选择?

MOS即将启用双因子认证

路口掉头需要不需要等红灯?

热文鉴赏:

揭开"仿宋"和"仿宋_GB2312"的神秘面纱

中国队“自己的”世界杯

你不知道的C罗-Siu庆祝动作

架构设计的15个关键概念

大阪环球影城避坑指南和功略

推荐一篇Oracle RAC Cache Fusion的经典论文

"红警"游戏开源代码带给我们的震撼

文章分类和索引:

公众号1700篇文章分类和索引

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
数据集介绍:多环境动物及人类活动目标检测数据集 一、基础信息 数据集名称:多环境动物及人类活动目标检测数据集 图片数量: - 训练集:12,599张图片 - 验证集:1,214张图片 - 测试集:607张图片 总计:14,420张图片 分类类别: - bear(熊): 森林生态系统的顶级掠食者 - bird(鸟类): 涵盖多种飞行及陆栖鸟类 - cougar(美洲狮): 山地生态关键物种 - person(人类): 自然环境与人类活动交互场景 - truck(卡车): 工业及运输场景的车辆目标 - ungulate(有蹄类动物): 包括鹿、羊等草食性哺乳动物 - wolf(狼): 群体性捕食动物代表 标注格式: YOLO格式标注,包含归一化坐标的边界框及类别标签,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面监控等多视角数据,包含昼夜不同光照条件及复杂背景场景。 二、适用场景 野生动物保护监测: 支持构建自动识别森林/草原生态系统中濒危物种的监测系统,用于种群数量统计和栖息地研究。 农业与畜牧业管理: 检测农场周边的捕食动物(如狼、美洲狮),及时预警牲畜安全风险。 智能交通系统: 识别道路周边野生动物与运输车辆,为自动驾驶系统提供碰撞预警数据支持。 生态研究数据库: 提供7类典型生物与人类活动目标的标注数据,支撑生物多样性分析与人类活动影响研究。 安防监控增强: 适用于自然保护区监控系统,同时检测可疑人员(person)与车辆(truck)的非法闯入。 三、数据集优势 多场景覆盖: 包含森林、公路、山地等多类型场景,覆盖从独居动物(cougar)到群体生物(wolf)的检测需求。 类别平衡设计: 7个类别经专业数据采样,避免长尾分布问题,包含: - 3类哺乳动物捕食者(bear/cougar/wolf) - 2类环境指示物种(bird/ung
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值