二叉树中各结点的和为某一值的路径

32 篇文章 0 订阅
9 篇文章 0 订阅
这篇博客介绍了如何找到二叉树中节点值之和等于给定整数的路径。通过前序遍历从根节点开始,将节点加入路径并累加其值。当遇到叶节点且路径和等于目标值时,打印路径。在递归访问子节点后,从路径中移除当前节点并减去其值,保持路径从根到父节点的状态。实现算法使用了栈来保存路径。
摘要由CSDN通过智能技术生成

1、题目

      输入一棵二叉树和一个整数,打印出二叉树中结点值的和为输入整数的所有路径。从树的根结点开始往下一直到叶结点所经过的结点形成一条路径。二叉树结点的定义如下:

struct BinaryTreeNode
{
     int    m_nValue;
     BinaryTreeNode*  m_pLeft;
     BinaryTreeNode*  m_pRight;
};

例如输入图1中二叉树和整数22,则打印出两条路径,第一条路径包含结点10、12.第二条包含结点10、5和7.


图1、二叉树

2、分析思路

由于路径是从根结点出发到叶结点,也就是说路径总是从根结点为起始点,因此我们首先需要遍历根结点。在树的前序、中序、后序三种遍历方式中,只有前序遍历是首先访问根结点的。

当用前序遍历的方式访问某一结点时,我们把该结点添加到路径上,并累加该结点的值。如果该结点为叶结点并且路径中结点值的和刚好等于输入的整数,则当前的路径符合要求,打印出来。如果当前结点不是叶结点,则继续访问它的子结点。当前结点访问结束后,递归函数将自动回到它的父结点。因此我们在函数退出之前要在路径上删除当前结点并减去当前结点的值,以确保返回父结点时路径刚好是从根结点到父结点的路径。不难看出保存路径的数据结构是一个栈,因为路径要与递归调用状态一致,而递归调用的本质就是一个压栈和出栈的过程。


3、参考代码

//寻找二叉树中各节点的和为某一值的路径
void FindPath1(BinaryTreeNode* root, int expecedtSum, std::vector<int>& path, int& currentSum);
void  FindPath(BinaryTreeNode* root, int expecedtSum)
{
	if(root == NULL)
		return;
	std::vector<int> path;
	int currentSum;
	FindPath1(root,expecedtSum,path,currentSum);
}

void FindPath1(BinaryTreeNode* root, int expecedtSum, std::vector<int>& path, int& currentSum)
{
	currentSum+=root->m_nValue;
	path.push_back(root);   //头结点入栈
	bool isLeaf = (root->m_pLeft==NULL) && (root->m_pRight==NULL);   //判断是否是叶结点
	if(currentSum==expecedtSum && isLeaf)
	{//如果是叶结点且路径和的值与期望值相等
		cout<<"Path is found: ";
		std::vector<int>::iterator iter=path.begin();
		for(;iter!=path.end();iter++)
		{
			cout<<"\t"<<*iter;
		}
		cout<<endl;
	}

	if(root->m_pLeft!=NULL)
		FindPath1(root->m_pLeft,expecedtSum,path,currentSum);
	if(root->m_pRight!=NULL)
		FindPath1(root->m_pRight,expecedtSum,path,currentSum);
	//在返回到父结点之前,在路径上删除当前结点
	//并在currentSum中减去当前结点的值
	currentSum-=root->m_nValue;
	path.pop_back();
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值