【树形dp】Long Live the Queen

本文介绍了一道题目,要求在给定树结构中找到一个子树,使其所有节点值之和最大。通过树形动态规划(dp)解决此问题,定义dp[i]表示以节点i为根的子树的最大值。初始状态为dp[i] = value[i],然后通过转移方程dp[i] = dp[i] + sum{dp[G[i][j]] > 0}更新状态,其中G[i][j]表示i的一个孩子。最后遍历dp数组找出最大值。需要注意的是,当所有节点值都为负时,答案应选择最大的负数,以确保子树非空。
摘要由CSDN通过智能技术生成

题目链接:Long Live the Queen 

题意是给一棵树,每个结点都有一个值,从这棵树中选出一颗子树来,使得该子树的所有结点的值得和最大。


容易想到解决思路:定义dp[i]表示以结点i为根的子树中可以获得的最大值。

设i的孩子保存在vector: G[i]中,那么:

初始化:dp[i] = value[i],因为定义的是以该结点为根,所以该结点必须包含。

转移:dp[i] = dp[i] + sum{dp[G[i][j]] > 0},其中G[i][j]表示i的某个孩子,并且dp[G[i][j]] > 0时才加到dp[i]上。

当然,我们要先对i的孩子递归处理完毕以后再来处理i,因为这样孩子的dp值就可以先被更新,转移也才有意义。

最后,只需要遍历dp数组,找出以某个点为根的子树的最大值即可。

另外注意:

① 由于树的性质,我们可以把任何一个点作为树根,所以不妨假设结点1为整棵树的根即可。也正因此,建图时需要建双向边,在做dp时也要加入相应标记。

② 上述思路可以避免一个特殊情况的判断,看这组数据:

2

-3 -4

1 2

这里所有结点的value都是负值,但是题目要求的是非空子集,所以答案应该是-3,而不是0(不可以一个点都不选)

这么水的题为何我前两天跪了10发?搞不懂。。。

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <vector>
#include <algorithm>
using namespace std;

const int MAX = 16007;
vector<int> G[MAX];
int dp[MAX];
int val[MAX];
bool vis[MAX];
int n;

void kiss(int root) {
	vis[root] = true;
	for (int i = 0; i < G[root].size(); ++i) {
		if (!vis[G[root][i]]) {
			kiss(G[root][i]);
			if (dp[G[root][i]] > 0) dp[root] += dp[G[root][i]];
		}
	}
}

int main() {
	scanf(" %d", &n);
	for (int i = 1; i <= n; ++i) {
		scanf(" %d", val + i);
		dp[i] = val[i];
		G[i].clear();
	}
	int a, b;
	for (int i = 1; i < n; ++i) {
		scanf(" %d %d", &a, &b);
		G[a].push_back(b);
		G[b].push_back(a);
	}
	
	memset(vis, false, sizeof(vis));	
	kiss(1); // kiss root
	
	int ans = -0xfffffff;
	for (int i = 1; i <= n; ++i) {
		if (dp[i] > ans) ans = dp[i];
	}
	printf("%d\n", ans);
	
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值