SOEE2810: Data Analysis and VisualisationPython

Java Python Assessment brief

Module code & title

SOEE2810: Data Analysis and Visualisation

Assignment title

The Last Glacial Maximum report

Assignment type

Python notebook with code, free text and plots

Learning outcomes assessed

1. Practice skills in measurements, analysis, synthesis and integration of information, and in the application of related theoretical knowledge, where relevant.

3. You will be able to perform. simple operations on Linux systems (e.g. moving between and managing directories, text editing)

4. You will be able to design and execute efficient, simple computer programs (in Python) for reading, manipulating, analysing (including plotting) and outputting data

5. You will be able to diagnose and correct errors in code

Assignment length/Time limit guidance

No length limit for code, individual word limits for text sections

Use of GenAI in this assessment

RED: AI tools cannot be used You must not use GenAI tools. The purpose and format of the assessments makes it inappropriate or impractical for AI tools to be used.

Weighting

50% of total mark

Deadline or date of assessment

2pm Tuesday 17th December (week C1)

Submission method

Submit the coursework file by copying it into the “paleoclimate_coursework_submission” folder in your home directory on Jupyterhub. The time and date of submission is recorded automatically.

Feedback provision

Usually, you will receive your feedback before your next assessment for the module is due. Where it is appropriate to do so, and feedback can be released without invalidating the integrity of ongoing assessments, this will typically be no later than 15 working days post submission. Please be mindful that some students may have approved extensions for assessments which mean it is not appropriate to release feedback within 15 working days after individual submissions. In these cases, feedback will be released no later than 15 working days following the submission of all outstanding work for the assessment. Feedback on course will be incorporated into the graded work and returned to your home directory. Feedback will fo SOEE2810: Data Analysis and VisualisationPython llow each question and will note how the question can be better answered. Further feedback through meetings with the module manager is welcome, and can be requested over email.

Assignment summary guidance

The assignment is a python notebook that can be copied into your home directory in the same way as the weekly worksheets. Please see the guidance on Minerva for this. You will use python code to analyse, plot and interpret climate model data for a modern simulation and for the Last Glacial Maximum, a period of expanded ice sheet cover around 20 thousand years ago. Detailed instructions are provided as part of each individual section within the python notebook. A supplementary document is also provided on Minerva that includes details of the climate model setup which will help you locate the correct output files to work with.

Use of GenAI

Generative artificial intelligence (GenAI) tools cannot be used on this assessment. This assessment is designed to demonstrate foundation-level skills like developing code structure and debugging that are essential to your programme. While professional programmers may work successfully with GenAI tools, this is only possible because they have learned the foundation-level skills which enable them to guide and check the work of the AI.

General guidance

skills@library hosts useful guidance on academic skills including specific guidance on academic/writing and referencing Academic skills | Library | University of Leeds

Assessment criteria and process

Marks are assigned by these broad criteria:

40% of the marks for code functionality i.e. did you get the correct answer

30% of the marks for figure presentation and coding style.

30% of the marks for your interpretation of the results

This assessment has standard deadline and length penalties. Word counts are given for individual written sections. For information on late penalties and assignment length requirement penalties see the Faculty CoPA or School Annex.

There is no assessment of technical written English in this coursework.

This assessment can be resat via a similar assessment method.

Presentation/Formatting and referencing

There are no formatting requirements for text and no referencing is required. Figure formatting forms part of the assessment above         

通过短时倒谱(Cepstrogram)计算进行时-倒频分析研究(Matlab代码实现)内容概要:本文主要介绍了一项关于短时倒谱(Cepstrogram)计算在时-倒频分析中的研究,并提供了相应的Matlab代码实现。通过短时倒谱分析方法,能够有效提取信号在时间与倒频率域的特征,适用于语音、机械振动、生物医学等领域的信号处理与故障诊断。文中阐述了倒谱分析的基本原理、短时倒谱的计算流程及其在实际工程中的应用价值,展示了如何利用Matlab进行时-倒频图的可视化与分析,帮助研究人员深入理解非平稳信号的周期性成分与谐波结构。; 适合人群:具备一定信号处理基础,熟悉Matlab编程,从事电子信息、机械工程、生物医学或通信等相关领域科研工作的研究生、工程师及科研人员。; 使用场景及目标:①掌握倒谱分析与短时倒谱的基本理论及其与傅里叶变换的关系;②学习如何用Matlab实现Cepstrogram并应用于实际信号的周期性特征提取与故障诊断;③为语音识别、机械设备状态监测、振动信号分析等研究提供技术支持与方法参考; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,先理解倒谱的基本概念再逐步实现短时倒谱分析,注意参数设置如窗长、重叠率等对结果的影响,同时可将该方法与其他时频分析方法(如STFT、小波变换)进行对比,以提升对信号特征的理解能力。
先看效果: https://pan.quark.cn/s/aceef06006d4 OJBetter OJBetter 是一个 Tampermonkey 脚本项目,旨在提升你在各个在线评测系统(Online Judge, OJ)网站的使用体验。 通过添加多项实用功能,改善网站界面和用户交互,使你的编程竞赛之旅更加高效、便捷。 ----- 简体中文 ----- 安装 主要功能 安装脚本,你可以获得: 黑暗模式支持:为网站添加黑暗模式,夜晚刷题不伤眼。 网站本地化:将网站的主要文本替换成你选择的语言。 题目翻译:一键翻译题目为目标语言,同时确保不破坏 LaTeX 公式。 Clist Rating 分数:显示题目的 Clist Rating 分数数据。 快捷跳转:一键跳转到该题在洛谷、VJudge 的对应页面。 代码编辑器:在题目页下方集成 Monaco 代码编辑器,支持自动保存、快捷提交、在线测试运行等功能。 一些其他小功能…… [!NOTE] 点击 网页右上角 的 按钮,即可打开设置面板, 绝大部分功能均提供了帮助文本,鼠标悬浮在 ”? 图标“ 上即可查看。 使用文档 了解更多详细信息和使用指南,请访问 Wiki 页面。 如何贡献 如果你有任何想法或功能请求,欢迎通过 Pull Requests 或 Issues 与我们分享。 改善翻译质量 项目的非中文版本主要通过机器翻译(Deepl & Google)完成,托管在 Crowdin 上。 如果你愿意帮助改进翻译,使其更准确、自然,请访问 Crowdin 项目页面 贡献你的力量。 支持其他OJ? 由于作者精力有限,并不会维护太多的类似脚本, 如果你有兴趣将此脚本适配到其他在线评测系统,非常欢迎,你只需要遵守 GP...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值