机试笔记

目录

 

1.基础知识

1.1常用函数

1.2 字符串

1.2.1字符串哈希

1.3 数据结构

1.4数论

1.4.1最大公约数

1.4.2素数

1.4.3扩展欧几里得算法及其衍生

1.4.4组合数

2.一些小的注意点

3 刷的题

递归数列


1.基础知识

1.1常用函数

  1. double:fabs(double x) 绝对值
  2. double:floor(double x) 向下取整
  3. double:ceil(double x) 向上取整
  4. double:round(double x) 四舍五入
  5. pow,log,sin,cos,tan,acos,asin,atan,sqrt
  6. sort priority_queue自定义优先级
  7. bool operator<(interval a , interval b)
    {
        if(a.ed == b.ed) return a.st<b.st;
        return a.ed>b.ed;   //从小到大
    }
    bool cmp(interval a,interval b)
    {
        if(a.st==b.st)
            return a.ed<b.ed;
        return a.st<b.st;//从小到大
    
    }
    priority_queue<int,vector<int>,greater<int> >que3;//注意“>>”会被认为错误,  
                                                          //这是右移运算符,所以这里用空格号隔开  
        priority_queue<int,vector<int>,less<int> >que4;最大值优先,默认就是最大值优先

     

  8. sscanf(str,"%d",&n),把字符数组str的内容以"%d"的格式写到n中。
  9. sprintf(str,"%d",n),把n以"%d"的格式写到str中,就是把整数变成字符串
  10. 生成随机数:添加头文件stdlib.h头文件与time.h头文件。
    在main函数开头加上
     
    srand((unsigned)time(NULL));

    这个语句将生成随机数的种子,然后在需要用到随机数的地方使用rand()函数。
     

    rand()%(b-a+1)+a;//表示生成范围为[a,b]内的随机数

    但是缺点是范围不能太大。

  11. 文件读写:

    
    freopen("in.txt","r",stdin);//设置 cin scanf 这些输入流都从 a.in中读取
    freopen("out.txt","w",stdout);//设置 cout printf 这些输出流都输出到 a.out里面去

     

1.2 字符串

  1. sscanf(str,”%d”,&n) 
    以固定字符串为输入源 从一个字符串中读进与指定格式相符的数据 str为char str[maxn].
    这里可以把任意“指向字符的指针”看成字符串,从该位置开始,知道字符“\0”。
    例如如果str="(11,LL)",那么
    int v;
    sscanf(&str[1],"%d",&v); 

    v就是11。

  2. strchr(str,',')返回字符串str中从左往右第一个字符“,”的指针,在上面的例子里,它返回的字符串就是“,LL)”

  3. sprintf(str,”%d”,n)

1.2.1字符串哈希

  1. 把字符串的A~Z视为0~25,这样就把26个大写字母对应到了26进制中,接着将二十六进制转换为十进制,而十进制为唯一的。

1.3 数据结构

  1. 给定一棵包含2^d个结点的完全二叉树,如果把结点从上到下从左到右编号为1,2,3……,则结点k的左右子节点编号分别为2k和2k+1。
  2. 欧拉道路/欧拉回路,即一笔画问题。
    性质:
    由于除了起点和终点外,其他点的进出次数应该相等,所以如果一个无向图是连通的,且最多只有两个奇点,则一定存在欧拉道路。如果有两个奇点,则必须从一个奇点出发另一个奇点终止;如果没有奇点,则可以从任意点出发,最终一定会回到该点(欧拉回路)
    打印欧拉道路:
    void euler(int u)
    {
        for(int v=0;v<n;v++)
            if(G[u][v]&&!vis[u][v])
            {
                vis[u][v]=vis[v][u]=1;//换成vis[u][v]就变成了有向图
                euler(v);
                printf("%d %d\n",u,v);
            }
    }

     

1.4数论

1.4.1最大公约数

  1. 辗转相除法:gcd(a,b)=gcd(b,a%b); //注意如果a<b,那么swap(a,b)
  2. 0和任意一个整数a的最大公约数都是a。(当作递归边界
  3. 最小公倍数:ab/gcd(a,b)

1.4.2素数

  1. 如果要求一个正整数N的因子个数,只需要对其质因子分解,得到各质因子pi的个数分别为e1,e2、……ek,于是N的因子个数为(e_1+1)*(e_2+1)*...*(e_k+1)。原因是,对每个质因子pi都可以选择其出现0次、1次、...、ei次,共ei+1种,组合起来就是答案。由同样的原理可知,N的所有因子之和为\frac{1-p_1^{e1+1}}{1-p_1}*\frac{1-p_2^{e2+1}}{1-p_2}*...*\frac{1-p_k^{ek+1}}{1-p_k}

1.4.3扩展欧几里得算法及其衍生

解决的问题:给定两个非零整数a和b,求一组整数解(x,y),使得ax+by=gcd(a,b)成立

  1. 由欧几里得算法得,a*1+b*0=gcd成立,此时有x=1,y=0成立
  2. 由公式\left\{\begin{matrix} x_1=y_2 \\ y_1=x_2-(a/b)y_2 \end{matrix}\right.可以得出,求一组解的方法:
    int exGCD(int a,int b,int &x,int &y)
    {
        if (b==0)
        {
            x=1;
            y=0;
            return a;    
        }
        int g=exGCD(b,a%b,x,y);
        int temp=x;
        x=y;
        y=temp-a/b*y;
        return g;
    }

    就可以通过下面的式子得到全部解,其中K为任意整数
    \left\{\begin{matrix} x'=x+\frac{b}{gcd}*K\\ y'=y-\frac{a}{gcd}*K \end{matrix}\right.

  3. 求解方程ax+by=c
    假设ax+by=gcd的一组解(x0,y0),要求c%gcd=0,则全部解为:
    \left\{\begin{matrix} x'=\frac{cx_0}{gcd}+\frac{b}{gcd}*K\\ y'=\frac{cy_0}{gcd}-\frac{a}{gcd}*K \end{matrix}\right.

  4. 同余式ax=c(mod m)的求解
    同余式,对整数a、b、m来说,如果m整除a-b,即(a-b)%m==0,那么就说a与b模m同余,对应的同余式为a=b(mod m),m称为同余式的模。
    ax=c(mod m)就是要求解(ax-c)%m=0,因此存在整数y,使得ax-c=my成立,移项并令y=-y得ax+my=c,要求c%gcd(a,m)=0,否则无解。同理得到:
    \left\{\begin{matrix} x'=\frac{cx_0}{gcd(a,m)}+\frac{m}{gcd(a,m)}*K\\ y'=\frac{cy_0}{gcd(a,m)}-\frac{a}{gcd(a,m)}*K \end{matrix}\right.
    其中K=0,1,...gcd(a,m)-1

  5. 逆元的求解,以及(b/a)%m的计算
    扩展欧几里得求逆元:条件:gcd(a,m)=1,即互质

    int inverse(int a,int m)
    {
        int x,y;
        int g=exgcd(a,m,x,y);
        return (x%m+m)%m;
    }

    费马小定理:设m是素数,a是任意整数且a%m!=0,则a^m^-^1=1(mod m)。则a模m的逆元为a^m^-^2%m%m。

1.4.4组合数

  1. C^m_n=C^m_{n-1}+C^{m-1}_{n-1}得到求组合式的递推公式,复杂度O():
    const int n=60;
    void calC(){
        for(int i=0;i<=n;i++)
        {
            res[i][0]=res[i][i]=1;
        }
        for(int i=2;i<=n;i++)
        {
            for(int j=0;j<=i/2;j++)
            {
                res[i][j]=res[i-1][j]+res[i-1][j-1];
                res[i][i-j]=res[i][j];
            }
        }
    }
  2. 由定义式:
    int C(int n,int m,int p)
    {
        int ans=1;
        for(int i=1;i<=m;i++)
        {
            ans=ans*(n-m+i)%p;
            ans=ans*inverse(i,p)%p;//求i模p的逆元
        }
    }

     


2.一些小的注意点

  1. arccos->acos()   pi=acos(-1)

  2. 先序遍历:根左右

    中序遍历:左根右

    后序遍历:左右根

  3. lower_bound( begin,end,num):从数组的begin位置到end-1位置二分查找第一个大于或等于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。

    upper_bound( begin,end,num):从数组的begin位置到end-1位置二分查找第一个大于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。

  4. 闰年:if (y%400==0 || (y%100 && y%4==0)) 

    普通闰年:能被4整除但不能被100整除的年份为普通闰年。(如2004年就是闰年,1999年不是闰年);

    世纪闰年:能被400整除的为世纪闰年。(如2000年是世纪闰年,1900年不是世纪闰年);

  5. 子串是连续的。子序列是中的字符在给定字符串中是不一定连续的。

  6. 多组数据不能直接while(1),还是判断一下是否是EOF吧。

  7. 数据大小:
     

    int-2*10^9~2*10^9  
    long long-9*10^1^8~9*10^1^8
    double-2^1^0^2^4~2^1^0^2^4  实际精度15~16位
  8. 太大的常数赋值给long long 需要在末尾加LL
  9. double类型的数标准输出应该是printf("%f",x);
  10. %md可以使不足m位的int型变量以m位进行右对齐输出,其中高位用空格补齐,如果本身长度超过m位,则保持原样。
    %0md就是用0补齐,%.mf是四舍六入五成双
  11. log(1.0)=0,头文件是math.h,log即是以e为底数的,C语言中没有对任意底数求对数的函数,因此必须使用换底公式来将不是以自然对数为底的对数转换位以e为底的对数,即log_{a}b=log_eb/log_ea
  12. 三角函数的参数应该是弧度制的,sin(pi*45/180)
  13. strcmp(a,b),比较字符串是否相同,如果相同则返回0
  14. double类型比较大小,由于精度问题,范围控制在eps=1e-8,如果fabs(a-b)<eps,就是相等,依此类推a-b>eps,则是a大于b;a-b<-eps就是a小于b;a-b>-eps,就是a大于等于b;a-b<eps,就是a小于等于b。
  15. 对于OJ来说一秒大概承受运算次数为10^7~10^8

3 刷的题

递归数列

题目描述

给定a0,a1,以及an=p*a(n-1) + q*a(n-2)中的p,q。这里n >= 2。 求第k个数对10000的模。

输入描述:

输入包括5个整数:a0、a1、p、q、k。

输出描述:

第k个数a(k)对10000的模。

示例1

输入

20 1 1 14 5

输出

8359

注意: 这里使用了矩阵快速幂来做,其实数据量不大不需要矩阵快速幂。注意矩阵快速幂的初始矩阵的构造以及不能用全为1的矩阵作为快速幂开始的矩阵(。

#include<stdio.h>
using namespace std;
const int mod = 10000;
int a0, a1;
int p, q, k;
struct mat
{
	int x11, x12, x21, x22;
};
mat matmul(mat &a, mat &b)
{
	mat c;
	c.x11 = (a.x11*b.x11%mod + a.x12*b.x21%mod) % mod;
	c.x12 = (a.x11*b.x12%mod + a.x12*b.x22%mod) % mod;
	c.x21 = (a.x21*b.x11%mod + a.x22*b.x21%mod) % mod;
	c.x22 = (a.x21*b.x12%mod + a.x22*b.x22%mod) % mod;
	return c;
}
mat pow(int k)
{
	mat a;
	a.x11 = p;
	a.x12 = q;
	a.x21 = 1;
	a.x22 = 0;
	mat ans = a; #原来就是这里错了,把ans设为全1矩阵了。
	while (k)
	{
		if (k & 1)
			ans = matmul(a, ans);
		a = matmul(a, a);
		k >>= 1;
	}
	return ans;
}
int main()
{
	while (~scanf("%d%d%d%d%d", &a0, &a1, &p, &q, &k))
	{
        q=q%mod;
        p=p%mod;
		mat ans = pow(k-1);
		printf("%d\n", (ans.x21*a1%mod + ans.x22*a0%mod) % mod);
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值