目录
1.基础知识
1.1常用函数
- double:fabs(double x) 绝对值
- double:floor(double x) 向下取整
- double:ceil(double x) 向上取整
- double:round(double x) 四舍五入
- pow,log,sin,cos,tan,acos,asin,atan,sqrt
- sort priority_queue自定义优先级
-
bool operator<(interval a , interval b) { if(a.ed == b.ed) return a.st<b.st; return a.ed>b.ed; //从小到大 } bool cmp(interval a,interval b) { if(a.st==b.st) return a.ed<b.ed; return a.st<b.st;//从小到大 } priority_queue<int,vector<int>,greater<int> >que3;//注意“>>”会被认为错误, //这是右移运算符,所以这里用空格号隔开 priority_queue<int,vector<int>,less<int> >que4;最大值优先,默认就是最大值优先
- sscanf(str,"%d",&n),把字符数组str的内容以"%d"的格式写到n中。
- sprintf(str,"%d",n),把n以"%d"的格式写到str中,就是把整数变成字符串
- 生成随机数:添加头文件stdlib.h头文件与time.h头文件。
在main函数开头加上
srand((unsigned)time(NULL));
这个语句将生成随机数的种子,然后在需要用到随机数的地方使用rand()函数。
rand()%(b-a+1)+a;//表示生成范围为[a,b]内的随机数
但是缺点是范围不能太大。
-
文件读写:
freopen("in.txt","r",stdin);//设置 cin scanf 这些输入流都从 a.in中读取 freopen("out.txt","w",stdout);//设置 cout printf 这些输出流都输出到 a.out里面去
1.2 字符串
- sscanf(str,”%d”,&n)
以固定字符串为输入源 从一个字符串中读进与指定格式相符的数据 str为char str[maxn].
这里可以把任意“指向字符的指针”看成字符串,从该位置开始,知道字符“\0”。
例如如果str="(11,LL)",那么int v; sscanf(&str[1],"%d",&v);
v就是11。
-
strchr(str,',')返回字符串str中从左往右第一个字符“,”的指针,在上面的例子里,它返回的字符串就是“,LL)”
- sprintf(str,”%d”,n)
1.2.1字符串哈希
- 把字符串的A~Z视为0~25,这样就把26个大写字母对应到了26进制中,接着将二十六进制转换为十进制,而十进制为唯一的。
1.3 数据结构
- 给定一棵包含2^d个结点的完全二叉树,如果把结点从上到下从左到右编号为1,2,3……,则结点k的左右子节点编号分别为2k和2k+1。
- 欧拉道路/欧拉回路,即一笔画问题。
性质:
由于除了起点和终点外,其他点的进出次数应该相等,所以如果一个无向图是连通的,且最多只有两个奇点,则一定存在欧拉道路。如果有两个奇点,则必须从一个奇点出发另一个奇点终止;如果没有奇点,则可以从任意点出发,最终一定会回到该点(欧拉回路)
打印欧拉道路:void euler(int u) { for(int v=0;v<n;v++) if(G[u][v]&&!vis[u][v]) { vis[u][v]=vis[v][u]=1;//换成vis[u][v]就变成了有向图 euler(v); printf("%d %d\n",u,v); } }
1.4数论
1.4.1最大公约数
- 辗转相除法:gcd(a,b)=gcd(b,a%b); //注意如果a<b,那么swap(a,b)
- 0和任意一个整数a的最大公约数都是a。(当作递归边界
- 最小公倍数:ab/gcd(a,b)
1.4.2素数
- 如果要求一个正整数N的因子个数,只需要对其质因子分解,得到各质因子pi的个数分别为e1,e2、……ek,于是N的因子个数为。原因是,对每个质因子pi都可以选择其出现0次、1次、...、ei次,共ei+1种,组合起来就是答案。由同样的原理可知,N的所有因子之和为
1.4.3扩展欧几里得算法及其衍生
解决的问题:给定两个非零整数a和b,求一组整数解(x,y),使得ax+by=gcd(a,b)成立
- 由欧几里得算法得,a*1+b*0=gcd成立,此时有x=1,y=0成立
- 由公式可以得出,求一组解的方法:
int exGCD(int a,int b,int &x,int &y) { if (b==0) { x=1; y=0; return a; } int g=exGCD(b,a%b,x,y); int temp=x; x=y; y=temp-a/b*y; return g; }
就可以通过下面的式子得到全部解,其中K为任意整数
-
求解方程ax+by=c
假设ax+by=gcd的一组解(x0,y0),要求c%gcd=0,则全部解为: -
同余式ax=c(mod m)的求解
同余式,对整数a、b、m来说,如果m整除a-b,即(a-b)%m==0,那么就说a与b模m同余,对应的同余式为a=b(mod m),m称为同余式的模。
ax=c(mod m)就是要求解(ax-c)%m=0,因此存在整数y,使得ax-c=my成立,移项并令y=-y得ax+my=c,要求c%gcd(a,m)=0,否则无解。同理得到:
其中K=0,1,...gcd(a,m)-1 -
逆元的求解,以及(b/a)%m的计算
扩展欧几里得求逆元:条件:gcd(a,m)=1,即互质int inverse(int a,int m) { int x,y; int g=exgcd(a,m,x,y); return (x%m+m)%m; }
费马小定理:设m是素数,a是任意整数且a%m!=0,则。则a模m的逆元为%m。
1.4.4组合数
- 由得到求组合式的递推公式,复杂度O():
const int n=60; void calC(){ for(int i=0;i<=n;i++) { res[i][0]=res[i][i]=1; } for(int i=2;i<=n;i++) { for(int j=0;j<=i/2;j++) { res[i][j]=res[i-1][j]+res[i-1][j-1]; res[i][i-j]=res[i][j]; } } }
- 由定义式:
int C(int n,int m,int p) { int ans=1; for(int i=1;i<=m;i++) { ans=ans*(n-m+i)%p; ans=ans*inverse(i,p)%p;//求i模p的逆元 } }
2.一些小的注意点
-
arccos->acos() pi=acos(-1)
-
先序遍历:根左右
中序遍历:左根右
后序遍历:左右根
-
lower_bound( begin,end,num):从数组的begin位置到end-1位置二分查找第一个大于或等于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。
upper_bound( begin,end,num):从数组的begin位置到end-1位置二分查找第一个大于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。
-
闰年:
if
(y%400==0 || (y%100 && y%4==0))
普通闰年:能被4整除但不能被100整除的年份为普通闰年。(如2004年就是闰年,1999年不是闰年);
世纪闰年:能被400整除的为世纪闰年。(如2000年是世纪闰年,1900年不是世纪闰年);
-
子串是连续的。子序列是中的字符在给定字符串中是不一定连续的。
-
多组数据不能直接while(1),还是判断一下是否是EOF吧。
-
数据大小:
int ~ long long ~ double ~ 实际精度15~16位 - 太大的常数赋值给long long 需要在末尾加LL
- double类型的数标准输出应该是printf("%f",x);
- %md可以使不足m位的int型变量以m位进行右对齐输出,其中高位用空格补齐,如果本身长度超过m位,则保持原样。
%0md就是用0补齐,%.mf是四舍六入五成双 - log(1.0)=0,头文件是math.h,log即是以e为底数的,C语言中没有对任意底数求对数的函数,因此必须使用换底公式来将不是以自然对数为底的对数转换位以e为底的对数,即
- 三角函数的参数应该是弧度制的,sin(pi*45/180)
- strcmp(a,b),比较字符串是否相同,如果相同则返回0
- double类型比较大小,由于精度问题,范围控制在eps=1e-8,如果fabs(a-b)<eps,就是相等,依此类推a-b>eps,则是a大于b;a-b<-eps就是a小于b;a-b>-eps,就是a大于等于b;a-b<eps,就是a小于等于b。
- 对于OJ来说一秒大概承受运算次数为~
3 刷的题
递归数列
题目描述
给定a0,a1,以及an=p*a(n-1) + q*a(n-2)中的p,q。这里n >= 2。 求第k个数对10000的模。
输入描述:
输入包括5个整数:a0、a1、p、q、k。
输出描述:
第k个数a(k)对10000的模。
示例1
输入
20 1 1 14 5
输出
8359
注意: 这里使用了矩阵快速幂来做,其实数据量不大不需要矩阵快速幂。注意矩阵快速幂的初始矩阵的构造以及不能用全为1的矩阵作为快速幂开始的矩阵(。
#include<stdio.h>
using namespace std;
const int mod = 10000;
int a0, a1;
int p, q, k;
struct mat
{
int x11, x12, x21, x22;
};
mat matmul(mat &a, mat &b)
{
mat c;
c.x11 = (a.x11*b.x11%mod + a.x12*b.x21%mod) % mod;
c.x12 = (a.x11*b.x12%mod + a.x12*b.x22%mod) % mod;
c.x21 = (a.x21*b.x11%mod + a.x22*b.x21%mod) % mod;
c.x22 = (a.x21*b.x12%mod + a.x22*b.x22%mod) % mod;
return c;
}
mat pow(int k)
{
mat a;
a.x11 = p;
a.x12 = q;
a.x21 = 1;
a.x22 = 0;
mat ans = a; #原来就是这里错了,把ans设为全1矩阵了。
while (k)
{
if (k & 1)
ans = matmul(a, ans);
a = matmul(a, a);
k >>= 1;
}
return ans;
}
int main()
{
while (~scanf("%d%d%d%d%d", &a0, &a1, &p, &q, &k))
{
q=q%mod;
p=p%mod;
mat ans = pow(k-1);
printf("%d\n", (ans.x21*a1%mod + ans.x22*a0%mod) % mod);
}
}