目录
1. 了解ES
1.1 elasticsearch的作用
elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助哦我们从海量数据中快速找到需要的内容
例如:
- 在GitHub搜索代码
- 在电商网站搜索商品
- 在百度中搜索答案
1.2 ELK技术栈
elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域。
而elasticsearch时elastic stack的核心,负责存储、搜索、分析数据。
1.3 elasticsearch和lucene
elasticsearch底层时基于lucene来实现的。
Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址:Apache Lucene - Welcome to Apache Lucene 。
elasticsearch的发展历史:
-
2004年Shay Banon基于Lucene开发了Compass
-
2010年Shay Banon 重写了Compass,取名为Elasticsearch。
1.4 为什么不是其他搜索技术?
目前比较知名的搜索引擎技术排名:
虽然在早期,Apache Solr是最主要的搜索引擎技术,但随着发展elasticsearch已经渐渐超越了Solr,独占鳌头:
1.1.5.总结
什么是elasticsearch?
- 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能
什么是elastic stack(ELK)?
- 是以elasticsearch为核心的技术栈,包括beats、Logstash、kibana、elasticsearch
什么是Lucene?
- 是Apache的开源搜索引擎类库,提供了搜索引擎的核心API
2. 倒排索引
倒排索引的概念是基于MySQL这样的正向索引而言的。
2.1 正向索引
那么什么是正向索引?例如给下表(tb_goods)中的id创建索引:
如果根据id查询,那么直接走索引,查询速度非常快。
但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:
- 用户搜索数据,条件是title符合"%手机%"
- 逐行获取数据,比如id为1的数据
- 判断数据中的title是否符合用户搜索条件
- 如果符合则放入结果集,不符合则丢弃。回到步骤1
逐行扫描,也就是全表扫描,随着数据量的增加,其查询效率也会越来越低。当数据量达到数百万是,就是一场灾难。
2.2 倒排索引
倒排索引中有两个非常重要的概念:
- 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
- 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为我、是、中国人、中国、国人这样的几个词条。
创建倒排索引是对正向索引的一种特殊处理,流程如下:
- 将每一个文档的数据利用算法分词,得到一个个词条
- 创建表,每行数据包括词条、词条所在文档id、位置等信息
- 因为词条唯一性,可以给词条创建索引,例如hash表结构索引
如图:
倒排索引的搜索流程如下(以搜索“华为手机”为例):
用户输入条件“华为手机”进行搜索
对用户输入内容分词,得到词条:华为、手机
拿着词条在倒排索引中查找,可以得到词条的文档id:1、2、3
拿着文档id到正向索引中查找具体文档。
如图:
虽然要先查询倒排索引,在查询正向索引,但是无论是词条,还是文档id都建立了索引,查询速度非常快!无需全表扫描。
2.3 正向和倒排对比
正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程。
而倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档id,然后根据id获取文档。是根据词条找文档的过程。
两者优缺点的对比:
- 正向索引:
优点:
- 可以给多个字段创建索引
- 根据索引字段搜索,排序速度非常快
缺点:
- 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。
- 倒排索引:
优点:
- 根据词条搜索,模糊搜索时,速度非常快
缺点:
- 只能给词条创建索引,而不是字段
- 无法根据字段做排序
3. es的一些概念
elasticsearch中有很多独有的概念,与mysql略有差别,但也有相似之处。
3.1 文档和字段
elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:
而Json文档中往往包含很多字段(Feild),类似于数据库中的列。
3.2 索引和映射
索引(Index),就是相同类型的文档的集合。
例如:
-
所有用户文档,就可以组织在一起,称为用户的索引;
-
所有商品的文档,可以组织在一起,称为商品的索引;
-
所有订单的文档,可以组织在一起,称为订单的索引;
因此,我们可以把索引当做是数据库中的表。
数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。
3.3 mysql与elasticsearc
我们统一的把mysql与elasticsearch的概念做一下对比:
MySQL | Elasticsearch | 说明 |
---|---|---|
Table | Index | 索引(index),就是文档的集合,类似数据库的表(table) |
Row | Document | 文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式 |
Column | Field | 字段(Field),就是JSON文档中的字段,类似数据库中的列(Column) |
Schema | Mapping | Mapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema) |
SQL | DSL | DSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD |
是不是说,我们学习了elasticsearch就不再需要mysql了呢?
并不是如此,两者各自有自己的擅长支出:
-
Mysql:擅长事务类型操作,可以确保数据的安全和一致性
-
Elasticsearch:擅长海量数据的搜索、分析、计算
因此在企业中,往往是两者结合使用:
-
对安全性要求较高的写操作,使用mysql实现
-
对查询性能要求较高的搜索需求,使用elasticsearch实现
-
两者再基于某种方式,实现数据的同步,保证一致性
4. 安装es、kibana
4.1 安装
可以参考我的docker安装elasticsearch。
4.2 总结
分词器的作用是什么?
-
创建倒排索引时对文档分词
-
用户搜索时,对输入的内容分词
IK分词器有几种模式?
-
ik_smart:智能切分,粗粒度
-
ik_max_word:最细切分,细粒度
IK分词器如何拓展词条?如何停用词条?
-
利用config目录的IkAnalyzer.cfg.xml文件添加拓展词典和停用词典
-
在词典中添加拓展词条或者停用词条