算力调度的关键技术是实现高效、灵活、按需匹配的算力资源分配的核心,涉及多个方面的技术和策略。以下是详细介绍:
1、算力感知
算力感知是通过实时监测和收集网络中各计算节点的资源使用情况,包括CPU、GPU利用率、内存状态等。这一过程依赖于传感器和监测软件的支持,可以在各个计算节点上采集并汇总数据,实时反馈到中央调度系统,为算力度量和后续的调度决策提供准确的数据支撑。例如,中国移动通信研究院提出的算力感知网络(Computing-Aware Networking,CAN)概念,通过度量、协议、架构等不同层面协同演进,构建面向算网一体化的新型基础网络。
应用场景:在自动驾驶汽车的实时数据处理中,算力感知能够根据车辆位置和附近数据中心的算力状况动态调整数据路径,确保行车安全系统的低延迟和高可靠性。在智慧城市的安全监控系统中,算力感知通过优化数据流向智能分析中心的路径,提高应急响应速度和效率。
2、算力度量
算力度量是在算力感知的基础上,对各计算节点的算力资源进行量化评价和对比。这涉及到对CPU、内存和带宽等资源指标的量化,提供实时可视化的算力分布。例如,中兴通讯技术提出的“四面三级”算力度量技术体系,从节点的计算、通信、内存和存储能力四个方面,按照三级指标的方式来建模和描述算力网络中异构立体泛在的算力。
应用场景:在内容分发网络中,算力度量选择最优路径来满足带宽需求,能够在算力资源丰富的网络中精确完成算力调度。在机器学习和人工智能领域,分布式的云边端算力发挥着重

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



