自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(239)
  • 收藏
  • 关注

原创 人工智能100问☞第34问:什么是语音识别与合成?

在人工智能的世界里,“看、听、说、写”早已不是人类的专属技能。语音识别,让机器有了耳朵;语音合成,让机器长了嘴巴;合在一起,机器就开始“说人话、听人言”了。

2025-05-27 10:43:09 335

原创 OpenAI砸65亿美元并购苹果设计教父Jony Ive的公司,AI终端要来了,算力产业颤了!

OpenAI这波,不是造手机,而是造下一代算力入口。

2025-05-26 09:49:38 339

原创 人工智能100问☞第33问:什么是计算机视觉?

计算机视觉就是让计算机拥有“看”和“理解”图像与视频的能力,就像人类用眼睛和大脑感知世界一样。

2025-05-26 09:34:58 487

原创 线性代数之张量计算,支撑AI算法的数学原理

在人工智能的世界里,“张量(Tensor)”是一个无法绕开的核心概念。听起来像是高级数学家才会用的词,但其实,张量是一个非常实用而通俗的概念 —— 它是向量与矩阵的高维推广。

2025-05-25 21:57:30 1248

原创 人工智能100问☞第32问:什么是迁移学习?

迁移学习就是让AI把在一个任务中学到的本事,拿来加速另一个任务的学习,实现“举一反三”。

2025-05-25 21:52:57 347

原创 Meta要上天,小扎真豪横!600亿美金砸向AI算力,谁在瑟瑟发抖?

扎克伯格此举,不是孤例,而是整个AI行业的缩影。我们正处在一次技术大洗牌的开端,谁有算力,谁能训练模型,谁就有资格定规则。Meta的600亿美元,是一场无法回头的豪赌。赌赢了,他们就能从社交巨头变身AI巨无霸;赌输了,就是第二个“元宇宙泡沫”。但无论结果如何,有一点是肯定的:AI不是谁“想做”就能做,而是谁“敢投”才能赢。这个世界,终究属于那些敢赌、能熬、会算账的人。

2025-05-24 21:04:04 934

原创 人工智能100问☞第31问:如何评估一个AI模型的性能?

评估AI模型性能,就是通过一系列指标综合判断它“答题”是否又准又稳、既快又聪明,能不能在新场景中举一反三。

2025-05-24 21:00:08 1033

原创 人工智能100问☞第30问:什么是损失函数?

损失函数是衡量模型预测值与真实值差异的非负实值函数,通过最小化该函数优化模型参数,从而降低预测误差。

2025-05-23 16:47:34 434

原创 一文带你详细了解英伟达Hopper H100 GPU

英伟达H100 GPU,代号Hopper,是NVIDIA于2022年推出的第九代数据中心GPU,专为AI训练、大模型推理、高性能计算(HPC)场景打造,是A100的直接继任者。

2025-05-23 14:53:19 1400

原创 “AI+工业制造”智能化转型解决方案

1、建设背景当前,中国制造业正处于智能化转型的关键阶段。随着“工业互联网”“中国制造2025”等国家战略的推进,以及“双碳”目标下节能减排的要求,制造企业亟需引入AI、大数据、物联网等新技术来提升竞争力。智能制造依托实时数据和AI分析,能够自动响应市场和生产需求的变化,提高生产效率和质量。此外,随着人口老龄化和人工成本上升,制造业亟需通过智能化手段替代传统的人力密集型流程,实现从“制造”向“智造”的升级。在此背景下,工业园区数字化程度不断提高,成为智能制造的基础设施。

2025-05-22 14:25:44 1037

原创 人工智能100问☞第29问:常见的激活函数有哪些?

激活函数如Sigmoid、ReLU、Softmax等,通过非线性映射与梯度优化机制,赋予神经网络“思考能力”,既打破线性束缚,又调控信号传递的强度与范围。

2025-05-22 09:29:25 829

原创 AI加速芯片全景图:主流架构和应用场景详解

从数据中心的超大算力,到边缘设备的低功耗推理,AI芯片正在重塑整个AI产业链。无论你是模型算法工程师、芯片架构师,还是AI系统集成商,理解芯片架构背后的逻辑,才能真正用好每一份算力。

2025-05-21 17:17:39 952

原创 人工智能100问☞第28问:什么是过拟合与欠拟合?

过拟合是模型学得太细导致新数据翻车,欠拟合是学得太糙连现有数据都搞不定,前者死磕训练数据噪音,后者连基本规律都没抓住。

2025-05-21 17:15:19 340

原创 一文带你详细了解英伟达Blackwell B200 GPU

2024年3月,英伟达在GTC大会上正式发布了基于Blackwell架构的B200 GPU。Blackwell架构的发布是英伟达技术创新的又一力作。B200 GPU为训练和推理万亿参数的大型语言模型(LLM)提供了无与伦比的计算能力,同时在能效和安全性方面实现了显著提升。

2025-05-20 22:31:23 1106

原创 当算力遇上520,AI不仅懂你,还能爱你

每年一到5月20日,朋友圈、微博、小红书就像被恋爱病毒入侵了一样,满屏都是“我爱你”“官宣”“求婚”“撒狗粮”……单身狗被虐得体无完肤,恋爱狗又忙着P图发红包。但今年的520,注定不一样。你有没有发现一个神奇的现象——越来越多的“表白”不再是人对人,而是“人对AI”的倾诉。比如:有人用ChatGPT写了一封完美的情书;有人用AI生成女友的虚拟形象,陪他过节;还有程序员直接送女朋友一张“H100”的显卡,说“这就是我爱的算力”。听起来离谱?但这,正是“AI+情感经济”全面渗透我们生活的开始。今年的520,已经

2025-05-20 22:25:57 1003

原创 人工智能100问☞第27问:神经网络与贝叶斯网络的关系?

神经网络与贝叶斯网络是两种互补的智能模型:神经网络通过多层非线性变换从数据中学习复杂模式,擅长大规模特征提取和预测,而贝叶斯网络基于概率推理建模变量间的条件依赖关系,擅长处理不确定性和因果推断。两者的融合(如贝叶斯神经网络)结合了深度学习的表征能力与概率建模的置信度量化优势,在提升预测可靠性的同时增强模型可解释性。

2025-05-19 18:30:03 909

原创 人工智能100问☞第26问:什么是贝叶斯网络?

贝叶斯网络是基于有向无环图和条件概率表构建的概率图模型,用于表达变量间的条件依赖关系并进行不确定性推理。

2025-05-18 19:06:16 582

原创 人工智能100问☞第25问:什么是循环神经网络(RNN)?

循环神经网络(RNN)是一种通过“记忆”序列中历史信息来处理时序数据的神经网络,可捕捉前后数据的关联性,擅长处理语言、语音等序列化任务。

2025-05-17 22:04:07 358

原创 技术剖析|线性代数之特征值分解,支撑AI算法的数学原理

特征值分解(Eigenvalue Decomposition)作为一种强大的矩阵分析工具,不仅是线性代数的核心概念,更是支撑众多AI算法的关键数学原理。从主成分分析(PCA)到推荐系统,从图像处理到自然语言处理,特征值分解无处不在。这种诞生于线性代数的矩阵分析方法,正在智能算法的演进历程中持续释放着独特的数学能量。

2025-05-16 10:07:58 1086

原创 人工智能100问☞第24问:什么是生成对抗网络(GAN)?

生成对抗网络(GAN)是一种由​​生成器​​与​​判别器​​组成的机器学习模型,通过对抗训练生成逼真数据。

2025-05-16 10:01:09 274

原创 “AI+医疗健康”智能化解决方案

当前全球医疗健康行业正面临前所未有的转型压力与机遇。随着人口老龄化加剧、慢性病负担加重,全球医疗资源供需矛盾日益突出——到2030年亚太地区每4人中就有1人年龄达60岁以上,而全球医护人员缺口预计将达1,000万。传统医疗服务模式面临"不可能三角"困境,难以同时实现低成本、高质量和高效率的医疗服务。在中国,95%的医疗机构为基层医院,但患者却集中涌向少数三甲医院,导致优质医疗资源严重失衡。医生职业倦怠现象普遍,重症监护医生仅有15%-30%时间用于直接诊疗,其余均耗费在行政事务上。

2025-05-15 11:05:26 663

原创 人工智能100问☞第23问:卷积神经网络(CNN)为何擅长图像处理?

卷积神经网络通过局部感知、参数共享和分层特征抽象,既能高效提取图像空间关联性,又具备平移不变性的生物视觉特性。

2025-05-15 10:49:38 716

原创 当算力遇上减肥:一场科技与脂肪的“降维打击战“

"每逢佳节胖三斤"的魔咒还没破,2025年国家卫健委的"体重管理年"政策已强势登场。当健身房还在推销私教课,医院门诊排着扎针减肥的长队,会不会有一场"智能瘦身革命"可以改写游戏规则:你的减肥计划,可能比你自己更懂你的身体。

2025-05-13 14:17:40 826

原创 人工智能100问☞第22问:什么是卷积神经网络(CNN)?

卷积神经网络(CNN)是一种通过​​卷积核扫描局部区域​​、​​参数共享​​和​​分层特征提取​​的深度学习模型,专为高效处理图像、语音等网格化数据设计,可直接从原始输入中自动学习关键特征。

2025-05-13 09:48:10 817

原创 人工智能100问☞第21问:神经网络如何模拟人脑结构?

神经网络通过​​分层连接的人工神经元​​模拟人脑结构,其中输入层接收信号(模拟树突接收信息),隐藏层通过权重调整(模拟突触可塑性)进行特征提取,输出层生成结果(类似轴突传递信号),并利用反向传播机制(类比生物神经元的多巴胺调节)不断优化连接强度,最终实现类似人脑的“边学习边修正”能力。

2025-05-12 17:04:33 1029

原创 人工智能100问☞第20问:神经网络的基本原理是什么?

神经网络通过模拟人脑神经元连接结构,借助多层神经元的前向传播(输入到输出逐层计算)与反向传播(误差逆向调整参数)机制,利用激活函数(如ReLU、Sigmoid)引入非线性特征,通过权重迭代优化实现从数据中自主学习,最终完成图像识别、语言处理等分类或预测任务。

2025-05-11 22:18:15 421

原创 “AI+城市治理”智能化解决方案

本方案基于大模型技术,构建覆盖感知、决策、执行全链条的智能治理体系,助力城市实现精准感知、高效处置、科学决策和可持续发展。

2025-05-10 21:09:12 888

原创 人工智能100问☞第19问:什么是专家系统?

专家系统是基于​​知识库​​(存储专家经验与规则)和​​推理机​​(模拟专家逻辑判断)的人工智能程序,能在特定领域(如医疗诊断、工业控制)高效解决复杂问题。

2025-05-10 21:03:48 483

原创 人工智能100问☞第18问:什么是图灵测试?

图灵测试是由艾伦·图灵于1950年提出的一种通过文本对话判断机器是否具备人类智能的方法,其核心标准是当超过30%的测试者无法区分对话对象是人还是机器时,即可认为该机器通过测试。值得注意的是,最新研究显示,如GPT-4.5等大语言模型在特定测试中已被误判为人类的比例高达73%,这表明现代AI系统已能在对话层面部分满足图灵提出的标准,但测试仍存在仅依赖语言交互、无法全面评估智能的争议。

2025-05-09 15:05:37 329

原创 2025年4月AI算力领域热点事件全景报告

本文通过公开资料梳理,从政策、行业、地方等角度收集整理了4月份AI算力产业领域的热点事件。

2025-05-08 15:54:51 1247

原创 人工智能100问☞第17问:智能体的定义及其基本特征?

智能体是能够通过传感器感知环境、自主决策并借助执行器采取行动以实现特定目标的智能实体或系统。

2025-05-08 09:28:17 319

原创 人工智能100问☞第16问:人工智能的典型应用场景有哪些?

人工智能通过机器学习与感知技术,广泛应用于智能家居、自动驾驶、工业质检、医疗诊断及金融决策等场景,实现从生活服务到产业升级的全方位赋能。

2025-05-07 16:16:17 349

原创 线性代数之矩阵运算:驱动深度学习模型进化的数学引擎

矩阵运算是线性代数的核心组成部分,也是深度学习模型构建和优化的数学基础。从基本的前向传播到复杂的注意力机制,都依赖于高效、稳定的矩阵计算实现。随着深度学习模型规模的不断扩大和应用场景的持续拓展,矩阵运算的优化和创新将继续成为推动这一领域发展的关键动力。理解矩阵运算的原理和应用,不仅有助于更好地设计和实现深度学习模型,也能为应对未来的计算挑战奠定坚实基础。

2025-05-07 15:39:45 943

原创 AI算力产业领域产品全景图:从硬件基础到应用场景

在人工智能迅猛发展的今天,算力已成为推动AI技术进步与应用落地的核心驱动力。随着深度学习模型规模的不断膨胀,从百万参数增长至万亿参数,对计算资源的需求呈指数级增长。为了让大家更好了解AI算力产业相关产品,我系统梳理了产业链各环节的产品类别、技术特点和应用场景,构建了一个全面的AI算力产业产品全景图,供大家参考学习,后续对针对对应产品进行测评。

2025-05-06 17:31:45 1113

原创 人工智能100问☞第15问:人工智能的常见分类方式有哪些?

人工智能的常见分类方式包括:​​按智能水平​​(弱人工智能、通用人工智能、超级人工智能)、​​按技术原理​​(生成式AI、判别式AI、强化学习)、​​按功能目标​​(生成内容、优化决策)、​​按应用领域​​(自然语言处理、计算机视觉、机器人技术等),以及​​按学习方式​​(监督学习、无监督学习、强化学习)

2025-05-06 17:25:33 1220

原创 当算力遇上抢茅台:从“拼手速”到“拼代码”,普通人如何破局?

“闹钟定好、手指抽筋、屏幕戳烂,还是抢不到一瓶1499的飞天茅台”——这届年轻人可能没想到,自己输给的不是黄牛,而是一串代码。这几年1499茅台的抢购战场早已从超市柜台转移到云端:每秒数亿次的算力在电商平台厮杀,AI程序用0.01秒完成下单,黄牛手握“算力核武器”日赚百万。​​当一瓶酒成了算力竞赛的筹码,普通人还能靠什么突围?​​

2025-05-05 16:29:41 252

原创 当算力遇上北京车牌摇号:清华学霸算不过摇号系统?

最近某科技公司用AI模型预测车牌中签概率,结果被大数据打脸了。这年头连清华学霸都算不过的"玄学摇号",正在成为当代北京人的集体焦虑。车牌摇号池里躺着300多万"分母",中签率比考清北还低20倍。当科技宅男遇上概率黑洞,当云计算撞上北京户口,这场持续了13年的"现代科举",正在上演特大城市最魔幻的生存图鉴。

2025-05-04 21:48:04 657

原创 当算力遇上堵车:AI如何让城市血管不再“血栓”?

“堵车”是每个大城市的通病,但鲜少有人意识到:交通拥堵的根源并非车辆过多,而在于车速过慢,不是因为堵车才慢,而是因为慢才堵车。中国工程院院士王坚曾用一句反常识的话点破真相:“北京二环堵车时,路上仅有约6000辆车,但大家车速降到20公里/小时,这才是堵车的根源。”这种颠覆认知的结论,背后是算力的崛起。当传统的“限行限号”治标不治本时,算力正以“上帝视角”重新定义城市交通——它能实时感知车流、动态调控信号灯,甚至预判堵车风险,让城市从“被动救火”转向“主动疏堵”。

2025-05-01 22:58:26 346

原创 人工智能100问☞第14问:人工智能的三大流派(符号主义、联结主义、行为主义)有何区别?

符号主义模仿大脑的功能,联结主义模仿大脑的结构,行为主义模仿人类的行为。三者的出现是还原论分而治之研究的结果。

2025-05-01 22:54:45 1120

原创 当算力遇上贫困补助:能否让补助精准到户?

以往扶贫的画面是“扶贫干部背着米面油翻山越岭”,当算力发展到一定程度,会呈现出一种新的画面:农民伯伯用手机扫描柑橘叶片的黄斑,AI瞬间诊断病害;村长依托大模型预测农时,让贫瘠土地亩产翻倍;扶贫干部用手机扫描贫困户的房屋照片,AI算法瞬间判断危房等级;扶贫办主任依托大数据模型自动筛选出最需要产业帮扶的农户;监管部门依托区块链技术让每一笔扶贫补贴流向都清晰可查……这种看似"魔幻"的场景,正是中国式扶贫的科技升级版——​​"算力扶贫"​​。

2025-04-30 11:15:47 983

《数字低空测试与验证白皮书(第一阶段)》

内容概要:本文档为《数字低空测试与验证白皮书(第一阶段)》,聚焦数字低空测试与验证的核心需求,梳理了技术发展现状与挑战。数字低空通过通信、感知、导航等技术融合,推动物流、巡检、文旅等场景智能化应用,但面临高密度、高频次、异构化等挑战,亟需完善测试与验证体系。白皮书提出“四横三纵”架构,“四横”覆盖物理设施、信息基础设施、数字化空间和应用系统四大层级,“三纵”通过模拟仿真、封闭区域和开放区域测试,全面评估系统性能与可靠性。该架构贯穿数字低空系统全生命周期,明确了通信、感知、计算、安全等关键指标,为技术规模化应用和标准化建设提供科学依据,助力低空经济高质量发展。 适用人群:从事低空经济及相关技术研发、测试、管理的专业人员,政策制定者,行业研究人员。 使用场景及目标:①为低空物流、文旅、载人、巡检、消防等典型应用场景提供测试验证内容与关键指标;②推动低空经济的标准化建设,确保系统的安全性、可靠性和适应性;③为技术研发、测试验证、政策制定提供科学依据和指导。 其他说明:白皮书详细阐述了基于用例、场景和公共开放空域的测试方法,以及虚拟仿真、硬件在环和封闭空域测试技术。这些方法和技术不仅能够满足不同测试阶段的需求,还能有效降低测试成本与风险,为数字低空系统的快速迭代和优化提供了有力支持。展望未来,数字低空测试与验证体系的完善,将成为低空经济高质量发展的重要推动力。

2025-04-23

泛在安全低空数智网技术体系白皮书

泛在安全低空数智网技术体系白皮书

2025-04-22

低空通导监气技术白皮书

内容概要:本文档由数字低空工作组编制,系统梳理了低空通信、导航、监视及气象技术(通导监气)的核心框架与应用场景,旨在为低空空域的安全高效运行提供技术支撑与标准化指引。文中详细介绍了低空通导监气技术的发展历程、核心技术、系统架构与集成、应用场景、面临的挑战及未来发展趋势。低空通导监气技术通过融合5G、卫星通信、高精度导航及智能感知等关键技术,逐步构建起覆盖通信、定位、环境监测与空域调度的综合体系,支撑农业监测、应急救援、城市物流等多样化场景。尽管当前仍面临通信信号覆盖盲区、动态频谱管理不足、数据隐私保护等挑战,但未来技术将朝着智能化、集成化与全球化方向演进,依托人工智能、边缘计算及空天地一体化网络,推动低空经济与智慧城市深度融合。 适用人群:政府监管部门、技术研发企业、行业用户、无人机及低空飞行器操作员、航空及通信领域的专业人士。 使用场景及目标:①理解低空通导监气技术的核心框架与标准体系,为低空空域的安全高效运行提供技术支撑;②促进低空空域管理技术的创新与应用;③推动国际合作,建立全球范围的低空空域监管网络;④为无人机交通管理、城市空中交通、低空物流、农业监测、应急救援等应用场景提供技术支持。 其他说明:本文档不仅涵盖了低空通导监气技术的基本概念、发展历程与现状,还深入探讨了其在无人机交通管理、城市公共服务、城市空中物流、农业与环境监测、应急救援与灾害管理等领域的具体应用。此外,文档还分析了技术挑战、法规与政策、市场与商业模式,并展望了未来的发展趋势,强调了智能化、集成化与全球化的重要性。通过阅读本文档,读者可以全面了解低空通导监气技术的现状与未来发展方向,为相关领域的研究与实践提供有价值的参考。

2025-04-22

通感一体赋能数字低空网络白皮书

内容概要:本文档深入探讨了低空经济的发展及其对通信感知一体化(通感)技术的需求。低空经济依托数字低空网络,以无人驾驶航空器为核心,构建快递物流、城市管理、农林植保和应急救援等领域的经济体系。文中指出,通信感知一体化是数字低空网络的重要支撑技术,通过硬件、频谱、信号处理等一体化设计,使通信设备同时具备通信与感知功能,具有低成本、广覆盖、高精度等特点。文档详细分析了通感技术的发展现状、面临的挑战(如通感融合理论缺失、低空立体覆盖不足、感知精度受限、感知可信性不足、全局干扰复杂),并提出了相应的解决方案。此外,文档还介绍了通感融合理论、低空通感架构及关键技术、标准化影响

2025-04-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除