dfs树上:
一条树边是桥边:当前仅当:没有任意一条回边连接其祖先与其后代节点。
我们用dp[x]表示 多少条回边穿过x - fa[x] 。
自下往上转移dp。
dp[x]=dp[y] + (x-> 其祖先节点 的回边的个数) - ( x的后代节点连接x的回边个数 )
最后只要dp[x]等于0,那么x与其父亲节点连接的边,一定是桥边。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define ls (o<<1)
#define rs (o<<1|1)
#define pb push_back
const double PI= acos(-1.0);
const int M = 1e5+7;
int head[M],cnt;
void init(){cnt=0,memset(head,0,sizeof(head));}
struct EDGE{int to,nxt,w;}ee[M*2];
void add(int x,int y,int w){ee[++cnt].nxt=head[x],ee[cnt].w=w,ee[cnt].to=y,head[x]=cnt;}
int dep[M];//深度
int f[M];//多少条回边穿过点x与其父亲所连接的边。
int nm=0;//桥的数量
void dfs(int x)
{
f[x]=0;
for(int i=head[x];i;i=ee[i].nxt)
{
int y=ee[i].to;
if(!dep[y])
{
dep[y]=dep[x]+1;
dfs(y);
f[x]+=f[y];
}
else if(dep[y]