dfs树 找桥边

该博客介绍了如何在DFS树上判断一条边是否为桥边。桥边的定义是不存在任何回边连接其祖先与后代节点。通过自底向上的DP转移,计算每个节点dp[x]表示穿过x和fa[x]的回边数量。如果dp[x]等于0,说明x与其父节点间的边是桥边。
摘要由CSDN通过智能技术生成

dfs树上:

一条树边是桥边:当前仅当:没有任意一条回边连接其祖先与其后代节点。

我们用dp[x]表示 多少条回边穿过x - fa[x]  。

自下往上转移dp。

dp[x]=dp[y] +  (x-> 其祖先节点 的回边的个数)  - ( x的后代节点连接x的回边个数 )

最后只要dp[x]等于0,那么x与其父亲节点连接的边,一定是桥边。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define ls (o<<1)
#define rs (o<<1|1)
#define pb push_back
const double PI= acos(-1.0);
const int M = 1e5+7;

int head[M],cnt;
void init(){cnt=0,memset(head,0,sizeof(head));}
struct EDGE{int to,nxt,w;}ee[M*2];
void add(int x,int y,int w){ee[++cnt].nxt=head[x],ee[cnt].w=w,ee[cnt].to=y,head[x]=cnt;}

int dep[M];//深度 
int f[M];//多少条回边穿过点x与其父亲所连接的边。 
int nm=0;//桥的数量 
void dfs(int x)
{
	f[x]=0;
	for(int i=head[x];i;i=ee[i].nxt)
	{
		int y=ee[i].to;
		if(!dep[y])
		{
			dep[y]=dep[x]+1;
			dfs(y);
			f[x]+=f[y];
		}
		else if(dep[y]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值