[Usaco2009 Open]滑雪课Ski

题目描述

Farmer John 想要带着 Bessie 一起在科罗拉多州一起滑雪。很不幸,Bessie滑雪技术并不精湛。 Bessie了解到,在滑雪场里,每天会提供S(0<=S<=100)门滑雪课。第i节课始于M_i(1<=M_i<=10000),上的时间为L_i(1<=L_i<=10000)。上完第i节课后,Bessie的滑雪能力会变成A_i(1<=A_i<=100). 注意:这个能力是绝对的,不是能力的增长值。 Bessie买了一张地图,地图上显示了N(1 <= N <= 10,000)个可供滑雪的斜坡,从第i个斜坡的顶端滑至底部所需的时长D_i(1<=D_i<=10000),以及每个斜坡所需要的滑雪能力C_i(1<=C_i<=100),以保证滑雪的安全性。Bessie的能力必须大于等于这个等级,以使得她能够安全滑下。 Bessie可以用她的时间来滑雪,上课,或者美美地喝上一杯可可汁,但是她必须在T(1<=T<=10000)时刻离开滑雪场。这意味着她必须在T时刻之前完成最后一次滑雪。 求Bessie在实现内最多可以完成多少次滑雪。这一天开始的时候,她的滑雪能力为1.

输入

第1行:3个用空格隔开的整数:T, S, N。
第2~S+1行:第i+1行用3个空格隔开的整数来描述编号为i的滑雪课:M_i,L_i,A_i。
第S+2~S+N+1行:
第S+i+1行用2个空格隔开的整数来描述第i个滑雪坡:C_i,D_i。

输出

一个整数,表示Bessie在时间限制内最多可以完成多少次滑雪。
 
解析
观察了一会,发现这是一道动态规划题。
我们可以设f[i][j]为时间为i,能力值为j时的最大滑雪次数,
那么很显然f[i][j]=max(f[i-1][j],滑坡的最优方案,上课的最优方案)。
滑坡的最优方案比较好办,但是上课的方案就比较麻烦了,需要循环枚举上课前的能力值,很费劲。
事实上,这里有两个贪心策略:
1.需要能力值相同的坡,需要时间短的一定更优。(省出的时间可以喝饮料或者接着滑呢QwQ)
2.课程达到能力值相同时,开始最晚的一定更优。(省出的时间可以喝饮料或者接着滑呢QwQ)
有了以上两条性质,我们可以在输入的时候顺便处理一下。
再处理一个g【i】,表示i时刻时达到的最大滑坡数。
那么在调用的时候就可以实现O(1)了。
下面是代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int N=10001;
int ke[N][101],po[N];
int t,s,n;
int f[N][101],g[N];//f[i][j]中的最大值 
void update(int i,int j)
{
    g[i]=max(f[i][j],g[i]);	
}
int main()
{
	cin>>t>>s>>n;
	for(int i=1,ls,le,la;i<=s;i++)
	 {
	 	cin>>ls>>le>>la;
	 	ke[ls+le-1][la]=max(ke[ls+le-1][la],ls);//ke[i][j]:i时间结束,能力变成j的最晚开课时间 
	 }
	 memset(f,128,sizeof f);
    memset(po,0x3f,sizeof po);
	for(int i=1,c,d;i<=n;i++)
		{
		  cin>>c>>d;
		  for(int j=c;j<=100;j++)po[j]=min(po[j],d);//能力值大于等于j的最小时间滑坡	
	    }
	    f[0][1]=0;
	for(int i=1;i<=t;i++)
	for(int j=1;j<=100;j++)
	  {
	    f[i][j]=f[i-1][j];	
	   	if(ke[i-1][j])f[i][j]=max(f[i][j],g[ke[i-1][j]]);
	    if(i-po[j]>=0)f[i][j]=max(f[i][j],f[i-po[j]][j]+1);
		  update(i,j);      
	  }
	cout<<g[t]<<endl;
return 0;
}

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值