我出镜了!

时光飞逝,程序员小灰这个微信公众号,已经运营整整7年时间了。

在这7年里,小灰输出过各种各样的文章和视频,有讲编程技术的,有讲职业规划的,有讲互联网行业新闻的,也有讲自己个人生活的。

不过,小灰分享的最最核心的内容,还是数据结构与算法相关的知识。

ad842b9c154c8cd51fe9231224da9c29.png

543f21eb63ef8653d39d97ee608408ef.png

为什么小灰会对数据结构与算法情有独钟呢?

一方面,算法对程序员确实很重要。虽然大家在工作中很少直接用到算法,但是大家调用的各种库、接口、背后都有着不同的算法实现。而且,大厂面试的时候也常常会考察大家的算法能力,熟练掌握算法,意味着你已经一只脚迈入了互联网大厂的大门。

另一方面,算法又确实不好学。许多程序员,一提到算法就很恐惧,觉得算法是一门高深又神秘的学问,自己摸索了很久都没能入门。

其实,算法并没有大家想象的那么难。小灰在这些年里,一直在用浅显易懂的漫画形式,给大家讲解各种各样的算法和数据结构知识,许多小伙伴都从这个公众号中收获了很多,从抵触算法到认识算法,再逐渐喜欢上了算法。

be15750d8bea3774a77437f2576edeae.png

几年前,有6家出版社同时看中了我公众号输出的内容,纷纷向我发出了约稿出书的邀请。小灰经过反复斟酌,最终和电子工业出版社合作,出版了我的第一本IT图书《漫画算法》。

后来,我在出书的道路上一发不可收拾,接连出版了三本算法相关的实际,在全网销量超过10W册,是IT领域的顶流畅销书:

b3e84c54756f2e0c19b1ddda196d5fb9.png

小灰的这三本算法书,帮助了许多迷茫程序员同胞们。

不过,图书仅仅是一种学习形式,有许多小伙伴并不太喜欢看书,更喜欢通过视频课程进行学习。

早在2019年的时候,就有人建议小灰尝试录制算法相关的课程,但我一直没有去做。

为什么不去做呢?因为小灰觉得自己的口才并不很好,对于录制课程一直有些心理障碍。

直到最近一段时间,小灰在朋友的鼓励下,终于决定走出舒适区,用自己多年积累的算法技术经验,给大家带来一套数据结构与算法的录播课程

课程的介绍如下:

ca103f0901af13c2fd96163c152701f1.png

扫下方二维码,可以看到课程详情:

d8e22a20a6c8179662f6b782508edafd.png

这门课可以说是算法与数据结构的保姆级教程,哪怕你完全不懂算法,不懂数据结构,只要有一点点Java或者Python编程基础,就可以通过这门课从0学会算法与数据结构。

课程正在持续更新中,总共计划更新30节正课内容,目前已更新9节。后续我也会视情况来给大家加餐,附送额外的课程内容。

今天,小灰的数据结构与算法课程开始预售了!课程原价是299元,在预售期只要69元。只要69元,就可以系统地学习数据结构与算法的视频课程,这价格简直就是在白送啊!

后来随着课程的不断更新,学习人数的不断增长,我们的课程价格也会不断上涨,一直涨到原价299元为止。想要学习数据结构和算法的小伙伴们,务必抓紧扫码下单,享受最高优惠价哦:

cafbe139733dc350894e0296a5e29b9f.jpeg

最后,大家对课程有什么疑问,或者已经购买课程的小伙伴,都可以添加小灰助理微信,备注“算法课”:

90e2fabe0205097eda6c7c1eae541372.png

<think>好的,我需要帮助用户解决如何在本地电脑上安装sentence-transformers库的问题。首先,我应该回忆相关的安装步骤和可能遇到的问题。根据用户提供的引用内容,有几个关键点需要注意: 首先,引用[3]提到可以使用pip安装,并且建议使用清华的镜像源来加速下载。命令是`pip install -i https://pypi.tuna.tsinghua.edu.cn/simple sentence-transformers`。这可能是一个直接的解决方案。 然后,引用[2]提到可能需要调整Python版本,特别是使用conda创建Python 3.11的环境,然后安装。如果用户已经安装了conda,可以推荐他们先创建一个环境,再安装。这样可以避免版本冲突的问题。 另外,引用[4]指出了一些可能的报错,比如需要安装特定版本的zipp,或者缺少gcc等编译工具。尤其是在Linux系统下,可能需要安装一些依赖库。用户如果在安装过程中遇到错误,可能需要这些解决方法。 接下来,我需要将这些信息整合成一个清晰的步骤指南。首先推荐使用pip安装,并给出镜像源。如果遇到问题,再建议使用conda环境管理。同时,提醒常见的依赖问题和解决方法,比如安装zipp或系统构建工具。 还要确保用户了解安装后的验证步骤,比如导入库并运行简单代码。这能帮助他们确认安装是否成功。 最后,生成相关问题需要考虑用户可能遇到的后续问题,比如环境配置、依赖错误处理以及库的应用场景。这些问题能够帮助用户更深入地理解安装过程和后续使用。</think>### 分步安装指南 #### 方法1:直接使用pip安装(推荐) 1. **打开终端/命令提示符** Windows使用`cmd`,macOS/Linux使用`Terminal` 2. **使用清华镜像源加速安装** ```bash pip install -i https://pypi.tuna.tsinghua.edu.cn/simple sentence-transformers ``` 此方法可避免因网络问题导致的下载缓慢[^3] #### 方法2:通过conda管理环境(解决版本冲突) 1. **创建独立Python环境** ```bash conda create -n st_env python=3.11 # 创建3.11版本环境 conda activate st_env # 激活环境 ``` 2. **安装库** ```bash conda install -c conda-forge sentence-transformers ``` 通过conda-forge渠道可自动处理依赖关系[^2] #### 常见问题处理 1. **报错`ImportError: cannot import name 'Mapping' from 'collections'`** ```bash pip install zipp==1.2.0 # 修复旧版本兼容性问题[^4] ``` 2. **Linux系统缺少编译工具** ```bash sudo apt-get install build-essential # 安装gcc等编译工具[^4] ``` #### 验证安装 ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('all-MiniLM-L6-v2') # 加载预训练模型 embeddings = model.encode("Hello World!") print(embeddings.shape) # 应输出(384,) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值