动态规划-1137.第N个泰波那契数-力扣(LeetCode)

一、题目解析

结合示例我们需要得出第i个泰波那契数的大小,由此我们能得出状态表示,dp[i]表示:第i个泰波那契数。

二、算法解析

根据题目要求我们得出了状态表示,对题目提供的定义式稍作变形就能得到状态转移方程。

原式为:Tn+3 = Tn + Tn+1 + Tn+2,将i替换n,并对下标减3

得到状态转移方程:Ti = Ti-1+ Ti-2 + Ti-3

初始化:根据题目我们需要初始化dp[0] = 0,dp[1] = dp[2] = 1即可,其余的可以通过定义式计算出来。

填表的顺序:例先填dp[4],dp[4] = dp[3] + dp[2] + dp[1],为了避免所需的状态未计算,所以从3开始从左到右依次填入数据进dp表中。

返回值:根据题目,我们只需要返回dp[i]的值即可。 

老规矩,先根据上面的解析去自己实现,链接:1137. 第 N 个泰波那契数 - 力扣(LeetCode)

 三、代码示例

class Solution {
public:
    int tribonacci(int n) {
        //处理边界条件
        if(n == 0) return 0;
        if(n == 1 || n == 2) return 1;

        vector<int> dp(n+1);
        dp[0] = 0,dp[1] = dp[2] = 1;
        for(int i = 3;i<=n;i++) dp[i] = dp[i-1] + dp[i-2] + dp[i-3];
        return dp[n];
    }
};

我们能知道时间复杂度是O(1),空间复杂度是O(N),下面我们可以用滚动数组对其进行优化,使其空间复杂度为O(1).

四、空间优化

 只需要在刚才代码的基础上,略加修改即可。

代码示例

class Solution {
public:
    int tribonacci(int n) {
        //处理边界条件
        if(n == 0) return 0;
        if(n == 1 || n == 2) return 1;

        int a = 0,b = 1,c = 1,d = 0;//空间优化
        for(int i = 3;i<=n;i++)
        {
            d = a + b + c;
            a = b;//赋值更新数据
            b = c;
            c = d;
        }
        return d;
    }
};

看到最后,如果对您有所帮助还请留下免费的点赞和收藏把!我们下期再见! 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值