Canvas 实现浏览器图片压缩

在 Web 开发中,图片是网页的重要组成部分之一,但高分辨率的图片往往会增加页面加载时间,影响用户体验。因此,我们需要一种方法来压缩图片,从而减小文件大小,加快页面加载速度。使用 HTML5 的 Canvas API,我们可以轻松地实现这一功能。本文将详细介绍如何使用 Canvas API 在客户端进行图片压缩,并给出多个示例来演示不同的压缩场景和技术细节。

基本概念与作用说明

Canvas API 提供了一个灵活的绘图环境,可以通过 JavaScript 来控制像素级的绘制。我们可以通过将图片绘制到 Canvas 上,然后重新导出为不同大小和质量的图片,从而实现图片压缩的目的。这种压缩方法不仅可以在客户端完成,减轻服务器的压力,还能让用户即时看到压缩效果。

压缩的基本原理

  • 缩小图片尺寸:通过调整 Canvas 的尺寸来缩小图片的宽度和高度。
  • 降低图片质量:通过调整导出图片的质量参数来降低图片的清晰度。

示例一:基础图片压缩

首先,我们来看一个简单的示例,该示例演示了如何使用 Canvas 将图片缩小并导出为 JPEG 格式。

function compressImage(file, maxWidth, quality) {
   
  return new Promise((resolve, reject) => {
   
    const img = new Image();
    const reader = new FileReader();

    reader.onload = (event) => {
   
      img.src = event.target.result;

      img.onload = () => {
   
        const canvas = document.createElement('canvas');
        const ctx = canvas.getContext('2d');

        // 调整 Canvas 大小
        canvas.width = img.width > maxWidth ? maxWidth : img.width;
        canvas.height = img.height * (canvas.width / img.width);

        // 绘制图片到 Canvas
        ctx.drawImage(img, 0, 0, canvas.width, canvas.height);

        // 导出为 JPEG 图片
        const compressedDataUrl = canvas.toDataURL('image/jpeg', quality);
        resolve(compressedDataUrl);
      };

      img.onerror = () => reject(new Error('Failed to load image.'));
    };

    reader.onerror = () => reject(new Error('Failed to read file.'));

    // 读取文件内容
    reader.readAsDataURL(file);
  });
}

使用示例

const fileInput = document.getElementById('file-input');
fileInput.addEventListener('change', async (event) => {
   
  const file = event.target.files[0];
  try {
   
    const compressedDataUrl = await compressImage(file, 800, 0.8);
    // 显示压缩后的图片
    co
基于机器学习的音频情感分析系统Python源码(高分项目),能够从语音中识别出四种基本情感:愤怒、快乐、中性和悲伤。个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末作业,代码资料完整,下载可用。 基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统P
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DTcode7

客官,赏个铜板吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值