算法学习相向双指针

在这里插入图片描述

在算法设计中,双指针技术是一种非常高效的方法,尤其适用于处理有序数组或链表的问题。其中,相向双指针是一种特殊的双指针策略,通常用于解决寻找两个数之和等于某个目标值、寻找数组中的最小子数组等问题。本文将详细介绍相向双指针的基本概念、应用场景及实现方法,并通过具体的代码示例帮助读者深入理解这一技术。

相向双指针的基本概念和作用

什么是相向双指针?

相向双指针是指在一个有序数组中,使用两个指针分别从数组的两端向中间移动,通过调整指针的位置来解决问题。这种方法特别适用于需要同时考虑数组两端元素的问题。

相向双指针的作用

相向双指针主要用于以下几个方面:

  • 寻找两个数之和:在有序数组中找到两个数,使它们的和等于某个目标值。
  • 寻找最小子数组:在数组中找到和为某个目标值的最小子数组。
  • 优化时间复杂度:相比暴力解法,相向双指针可以显著降低时间复杂度,提高算法效率。

示例代码

示例一:寻找两个数之和

给定一个已排序的数组和一个目标值,找到数组中两个数的和等于目标值。返回这两个数的索引。

def twoSum(nums, target):
    left, right = 0, len(nums) - 1
    
    while left < right:
        current_sum = nums[left] + nums[right]
        if current_sum == target:
            return [left, right]
        elif current_sum < target:
            left += 1
        else:
            right -= 1
    
    return [-1, -1]

示例二:寻找最小子数组

给定一个数组和一个目标值,找到和为该目标值的最小子数组。返回子数组的长度,如果不存在这样的子数组,返回 0。

def minSubArrayLen(target, nums):
    left, sum_val, min_len = 0, 0, float('inf')
    
    for right in range(len(nums)):
        sum_val += nums[right]
        
        while sum_val >= target:
            min_len = min(min_len, right - left + 1)
            sum_val -= nums[left]
            left += 1
    
    return min_len if min_len != float('inf') else 0

示例三:三数之和

给定一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a, b, c ,使得 a + b + c = 0 。找出所有满足条件且不重复的三元组。

def threeSum(nums):
    nums.sort()
    result = []
    
    for i in range(len(nums) - 2):
        if i > 0 and nums[i] == nums[i - 1]:
            continue
        
        left, right = i + 1, len(nums) - 1
        while left < right:
            total = nums[i] + nums[left] + nums[right]
            if total < 0:
                left += 1
            elif total > 0:
                right -= 1
            else:
                result.append([nums[i], nums[left], nums[right]])
                while left < right and nums[left] == nums[left + 1]:
                    left += 1
                while left < right and nums[right] == nums[right - 1]:
                    right -= 1
                left += 1
                right -= 1
    
    return result

示例四:四数之和

给定一个包含 n 个整数的数组 nums 和一个目标值 target,判断 nums 中是否存在四个元素 a, b, c, d ,使得 a + b + c + d = target 。找出所有满足条件且不重复的四元组。

def fourSum(nums, target):
    nums.sort()
    result = []
    
    for i in range(len(nums) - 3):
        if i > 0 and nums[i] == nums[i - 1]:
            continue
        
        for j in range(i + 1, len(nums) - 2):
            if j > i + 1 and nums[j] == nums[j - 1]:
                continue
            
            left, right = j + 1, len(nums) - 1
            while left < right:
                total = nums[i] + nums[j] + nums[left] + nums[right]
                if total < target:
                    left += 1
                elif total > target:
                    right -= 1
                else:
                    result.append([nums[i], nums[j], nums[left], nums[right]])
                    while left < right and nums[left] == nums[left + 1]:
                        left += 1
                    while left < right and nums[right] == nums[right - 1]:
                        right -= 1
                    left += 1
                    right -= 1
    
    return result

示例五:两数平方和

给定一个非负整数 c,判断是否存在两个整数 a 和 b,使得 a^2 + b^2 = c。返回布尔值。

def judgeSquareSum(c):
    left, right = 0, int(c**0.5)
    
    while left <= right:
        current_sum = left**2 + right**2
        if current_sum == c:
            return True
        elif current_sum < c:
            left += 1
        else:
            right -= 1
    
    return False

实际工作中的应用技巧

在实际开发中,相向双指针技术可以带来许多好处,但也需要注意一些细节:

  • 边界条件:处理好数组为空或只有一个元素的情况。
  • 指针管理:在移动指针时,确保不会越界或错过正确的解。
  • 去重处理:在寻找多个解的问题中,注意去重,避免重复解的出现。
  • 性能优化:对于大规模数据,考虑使用更高效的数据结构或算法来优化性能。
  • 代码可读性:编写清晰、易懂的代码,合理命名变量和函数,增加注释,提高代码的可维护性。

通过本文提供的示例和讨论,希望读者能够对相向双指针有更深入的理解,并在实际开发中灵活应用这些技术。相向双指针作为一种高效的算法技术,值得每一位开发者不断探索和实践。


欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。


推荐:DTcode7的博客首页。
一个做过前端开发的产品经理,经历过睿智产品的折磨导致脱发之后,励志要翻身农奴把歌唱,一边打入敌人内部一边持续提升自己,为我们广大开发同胞谋福祉,坚决抵制睿智产品折磨我们码农兄弟!


专栏系列(点击解锁)学习路线(点击解锁)知识定位
《微信小程序相关博客》持续更新中~结合微信官方原生框架、uniapp等小程序框架,记录请求、封装、tabbar、UI组件的学习记录和使用技巧等
《AIGC相关博客》持续更新中~AIGC、AI生产力工具的介绍,例如stable diffusion这种的AI绘画工具安装、使用、技巧等总结
《HTML网站开发相关》《前端基础入门三大核心之html相关博客》前端基础入门三大核心之html板块的内容,入坑前端或者辅助学习的必看知识
《前端基础入门三大核心之JS相关博客》前端JS是JavaScript语言在网页开发中的应用,负责实现交互效果和动态内容。它与HTML和CSS并称前端三剑客,共同构建用户界面。
通过操作DOM元素、响应事件、发起网络请求等,JS使页面能够响应用户行为,实现数据动态展示和页面流畅跳转,是现代Web开发的核心
《前端基础入门三大核心之CSS相关博客》介绍前端开发中遇到的CSS疑问和各种奇妙的CSS语法,同时收集精美的CSS效果代码,用来丰富你的web网页
《canvas绘图相关博客》Canvas是HTML5中用于绘制图形的元素,通过JavaScript及其提供的绘图API,开发者可以在网页上绘制出各种复杂的图形、动画和图像效果。Canvas提供了高度的灵活性和控制力,使得前端绘图技术更加丰富和多样化
《Vue实战相关博客》持续更新中~详细总结了常用UI库elementUI的使用技巧以及Vue的学习之旅
《python相关博客》持续更新中~Python,简洁易学的编程语言,强大到足以应对各种应用场景,是编程新手的理想选择,也是专业人士的得力工具
《sql数据库相关博客》持续更新中~SQL数据库:高效管理数据的利器,学会SQL,轻松驾驭结构化数据,解锁数据分析与挖掘的无限可能
《算法系列相关博客》持续更新中~算法与数据结构学习总结,通过JS来编写处理复杂有趣的算法问题,提升你的技术思维
《IT信息技术相关博客》持续更新中~作为信息化人员所需要掌握的底层技术,涉及软件开发、网络建设、系统维护等领域的知识
《信息化人员基础技能知识相关博客》无论你是开发、产品、实施、经理,只要是从事信息化相关行业的人员,都应该掌握这些信息化的基础知识,可以不精通但是一定要了解,避免日常工作中贻笑大方
《信息化技能面试宝典相关博客》涉及信息化相关工作基础知识和面试技巧,提升自我能力与面试通过率,扩展知识面
《前端开发习惯与小技巧相关博客》持续更新中~罗列常用的开发工具使用技巧,如 Vscode快捷键操作、Git、CMD、游览器控制台等
《photoshop相关博客》持续更新中~基础的PS学习记录,含括PPI与DPI、物理像素dp、逻辑像素dip、矢量图和位图以及帧动画等的学习总结
日常开发&办公&生产【实用工具】分享相关博客》持续更新中~分享介绍各种开发中、工作中、个人生产以及学习上的工具,丰富阅历,给大家提供处理事情的更多角度,学习了解更多的便利工具,如Fiddler抓包、办公快捷键、虚拟机VMware等工具

吾辈才疏学浅,摹写之作,恐有瑕疵。望诸君海涵赐教。望轻喷,嘤嘤嘤
非常期待和您一起在这个小小的网络世界里共同探索、学习和成长。愿斯文对汝有所裨益,纵其简陋未及渊博,亦足以略尽绵薄之力。倘若尚存阙漏,敬请不吝斧正,俾便精进!

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DTcode7

客官,赏个铜板吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值