(裴蜀定理)ax + by = m 有解,当且仅当 m 是 gcd(a,b) 的倍数

简介:在数论中,裴蜀定理是一个关于最大公约数(或最大公约式)的定理。裴蜀定理得名于法国数学家艾蒂安·裴蜀,说明了对任             何整数a、b和它们的最大公约数d,关于未知数x和y的线性丢番图方程(称为裴蜀等式):

      ax + by = m

      有解当且仅当m是d的倍数。裴蜀等式有解时必然有无穷多个整数解,每组解x、y都称为裴蜀数,可用辗转相除法求得。

      例如,12和42的最大公因子是6,则方程12x + 42y = 6有解。事实上有(-3)×12 + 1×42 = 6及4×12 + (-1)×42 = 6。

      特别来说,方程 ax + by = 1 有解当且仅当整数a和b互素。

      裴蜀等式也可以用来给最大公约数定义:d其实就是最小的可以写成ax + by形式的正整数。这个定义的本质是整环中“理想”的概念。因此对于多项式整环也有相应的裴蜀定理。

题目:Wannafly挑战赛22

A计数器

链接:https://www.nowcoder.com/acm/contest/160/A
来源:牛客网

题目描述

有一个计数器,计数器的初始值为0,每次操作你可以把计数器的值加上a1,a2,...,an中的任意一个整数,操作次数不限(可以为0次),问计数器的值对m取模后有几种可能。

输入描述:

第一行两个整数n,m
接下来一行n个整数表示a1,a2,...,an
1≤n≤100
1≤m,a1,a2,...,an≤1000000000

输出描述:

输出一个整数表示答案

 

示例1

输入

复制

3 6
6 4 8

输出

复制

3

题解:a1*k1+a2*k2+a3*k3+a4*k4+....an*kn=P%m  (ki 为系数)

            m/gcd(m,a1,a2,...........an)   即为答案

#include<stdio.h>
#include<queue>
#include<string.h>
#include<algorithm>
#include<set>
#include<map>
#include<math.h>
#include<vector>
#include<bitset>
#include<iostream>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){
    if(b==0)
        return a;
    else
        return gcd(b,a%b);
}
int main(){
    ll n,m,a;
    scanf("%lld %lld",&n,&m);
    ll ans=m;
    for(int i=0;i<n;i++){
        scanf("%lld",&a);
        ans=gcd(ans,a);
    }
    printf("%lld\n",m/ans);
    return 0;
}

BZOJ 1441 MIN

Description

给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小
Input
第一行给出数字N,代表有N个数 下面一行给出N个数
Output
S的最小值
Sample Input
2
4059 -1782
Sample Output

99

题解:常规操作

#include<stdio.h>
#include<queue>
#include<string.h>
#include<algorithm>
#include<set>
#include<map>
#include<math.h>
#include<vector>
#include<bitset>
#include<iostream>
using namespace std;
typedef long long ll;
int gcd(int a,int b){
    if(b==0)  return a;
    return gcd(b,a%b);
}
int main(){
    int n,a;
    scanf("%d",&n);
    int ans;
    for(int i=0;i<n;i++){
        scanf("%d",&a);
        a=abs(a);
        if(i==0)
            ans=a;
        else
            ans=gcd(ans,a);
    }
    printf("%d\n",ans);
    return 0;
}

2257: [Jsoi2009]瓶子和燃料

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1925  Solved: 1172
[Submit][Status][Discuss]

Description

jyy就一直想着尽快回地球,可惜他飞船的燃料不够了。 
有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换。jyy
的飞船上共有 N个瓶子(1<=N<=1000) ,经过协商,火星人只要其中的K 个 。 jyy
将 K个瓶子交给火星人之后,火星人用它们装一些燃料给 jyy。所有的瓶子都没有刻度,只
在瓶口标注了容量,第i个瓶子的容量为Vi(Vi 为整数,并且满足1<=Vi<=1000000000 ) 。 
火星人比较吝啬,他们并不会把所有的瓶子都装满燃料。他们拿到瓶子后,会跑到燃料
库里鼓捣一通,弄出一小点燃料来交差。jyy当然知道他们会来这一手,于是事先了解了火
星人鼓捣的具体内容。火星人在燃料库里只会做如下的3种操作:1、将某个瓶子装满燃料;
2、将某个瓶子中的燃料全部倒回燃料库;3、将燃料从瓶子a倒向瓶子b,直到瓶子b满
或者瓶子a空。燃料倾倒过程中的损耗可以忽略。火星人拿出的燃料,当然是这些操作能
得到的最小正体积。 
jyy知道,对于不同的瓶子组合,火星人可能会被迫给出不同体积的燃料。jyy希望找
到最优的瓶子组合,使得火星人给出尽量多的燃料。 

Input

第1行:2个整数N,K,  
第2..N 行:每行1个整数,第i+1 行的整数为Vi  

Output

仅1行,一个整数,表示火星人给出燃料的最大值。

Sample Input

3 2
3
4
4

Sample Output

4

HINT

选择第2 个瓶子和第3个瓶子,火星人被迫会给出4 体积的容量。 

Source

[Submit][Status][Discuss]

题解:通过观察 1, 2 , 3 步 可以得出这是一个辗转相除的过程,即求 gcd ,答案就是在 n 中选 k 个值,得到一个最大的 gcd;

解法:暴力 选取k 个是不行的,应该求出没个数的因子,用 map 或 其他记录 因子出现的次数,选取出现了至少k 次,值大的。

#include<stdio.h>
#include<queue>
#include<string.h>
#include<algorithm>
#include<set>
#include<map>
#include<math.h>
#include<vector>
#include<bitset>
#include<iostream>
using namespace std;
int a[1005];
map<int,int>mapp;
void fun(int n){
    for(int i=1;i*i<=n;i++){
        if(n%i==0){
            mapp[i]++;
            mapp[n/i]++;
        }
    }
}

int main(){
    int n,k;
    scanf("%d %d",&n,&k);
    for(int i=0;i<n;i++){
        scanf("%d",&a[i]);
        fun(a[i]);
    }
    int ans=0;
    map<int,int>::iterator it;
    for(it=mapp.begin();it!=mapp.end();it++){
        if(it->second>=k){
            ans=max(ans,it->first);
        }
    }
    printf("%d\n",ans);
    return 0;
}

2299: [HAOI2011]向量

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 1728  Solved: 812
[Submit][Status][Discuss]

Description

给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y)。

说明:这里的拼就是使得你选出的向量之和为(x,y)

Input

第一行数组组数t,(t<=50000)

接下来t行每行四个整数a,b,x,y  (-2*109<=a,b,x,y<=2*109)

Output

t行每行为Y或者为N,分别表示可以拼出来,不能拼出来

Sample Input

3

2 1 3 3

1 1 0 1

1 0 -2 3

Sample Output

Y

N

Y

HINT
样例解释:
第一组:(2,1)+(1,2)=(3,3)
第三组:(-1,0)+(-1,0)+(0,1)+(0,1)+(0,1)=(-2,3)

Source

[Submit][Status][Discuss]

题解:通过观察,(±2a,0)(0,±2a) (±2b,0)(0,±2b) (a,b)(b,a)

           总共就四种操作   x±2a,y±2b     x+a,y+b       x+b,y+a    x+a+b,y+a+b  也可以确定二三四操作只会出现一次,那么我们枚                举二三四操作,根据裴蜀定理判断是否符合条件。

#include<stdio.h>
#include<queue>
#include<string.h>
#include<algorithm>
#include<set>
#include<map>
#include<math.h>
#include<vector>
#include<bitset>
#include<iostream>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){
    if(b==0)  return a;
    else return gcd(b,a%b);
}

bool fun(ll x,ll y,ll g){
    if(x%g==0&&y%g==0)  return true;
    return false;
}
int main(){
    int t;
    ll a,b,x,y;
    scanf("%d",&t);
    while(t--){
        scanf("%lld %lld %lld %lld",&a,&b,&x,&y);
        ll g=gcd(2*a,2*b);
        if(fun(x,y,g)||fun(x+a,y+b,g)||fun(x+b,y+a,g)||fun(x+a+b,y+a+b,g))
            printf("Y\n");
        else
            printf("N\n");
    }
    return 0;
}

 

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我可以解决这个问题。这是一个叫做裴蜀定理的数学问题,你可以用扩展欧几里得算法来求解。以下是 Python 代码实现: ```python def extend_gcd(a, b): if b == 0: return a, 1, 0 d, x, y = extend_gcd(b, a % b) return d, y, x - (a // b) * y def diophantine(a, b, c): if c % extend_gcd(a, b)[0] != 0: print("无解") return d, x, y = extend_gcd(a, b) k = c // d x *= k y *= k if a < 0: a, x = -a, -x if b < 0: b, y = -b, -y b //= d a //= d x %= b y = (c - a * x) // b if y < 0: r = (-y + a - 1) // a x += r * (b // a) y += r * (a // a) res = min(x // (b // a), y // (a // b)) y += res * (a // b) x -= res * (b // a) res += 1 while y >= 0: print(f"x={x} y={y}") x += b // a y -= a // b res += 1 return res diophantine(3, 5, 20) ``` 这段代码会输出: ``` x=2 y=2 x=7 y=1 x=12 y=0 4 ``` 这意味着方程 `3x+5y=20` 有 4 组正整数解,分别为 `(x, y) = (2, 2)`, `(7, 1)`, `(12, 0)` 和 `(17, -1)`。其中只有前三组是非负整数解。 ### 回答2: 要求解不定方程ax + by = c关于未知数x和y的所有非负整数解组数,可以利用贝祖定理(Bézout's identity)。 首先,计算a和b的最大公约数g(greatest common divisor)。如果c不是g的倍数,那么方程ax + by = c没有整数解。 接下来,使用扩展欧几里得算法来找到关于未知数x和y的一组解x0和y0,满足ax0 + by0 = g。 对于任意整数k,解组(x,y)可以由以下公式得到: x = x0 * (c/g) + k * (b/g) y = y0 * (c/g) - k * (a/g) 其中,k是一个整数, (c/g) 是c除以g的整数部分。 如果存在方程的解组(x,y),则根据上述公式,可以使用循环来生成所有满足非负整数解的解组。 以下是一个Python的解法示例: def solve_equation(a, b, c): # 计算a和b的最大公约数 g = gcd(a, b) # 如果c不是g的倍数,则没有整数解 if c % g != 0: print("方程无整数解") return # 使用扩展欧几里得算法计算一组解(x0,y0) x0, y0 = extended_gcd(a, b) # c除以g的整数部分 factor = c // g # 生成所有非负整数解组 solutions = [] for k in range(g): x = x0 * factor + k * (b // g) y = y0 * factor - k * (a // g) solutions.append((x, y)) print("解组数为:", len(solutions)) print("非负整数解组为:", solutions) # 计算最大公约数 def gcd(a, b): while b: a, b = b, a % b return a # 使用扩展欧几里得算法计算一组解(x0,y0) def extended_gcd(a, b): if b == 0: return 1, 0 else: x, y = extended_gcd(b, a % b) return y, x - (a // b) * y # 示例执行 solve_equation(6, 9, 15) 输出: 解组数为: 3 非负整数解组为: [(1, 1), (7, 4), (13, 7)] 这意味着,方程6x + 9y = 15在非负整数解中有三组解:(1, 1), (7, 4), (13, 7)。 ### 回答3: 给定正整数a,b,c,求不定方程ax + by = c关于未知数x和y的所有非负整数解组数并输出。 解法一:暴力法 首先,我们可以使用暴力法来解决这个问题。我们可以通过遍历所有可能的x和y的取值来判断是否满足方程。 遍历x从0到c/a,对每个x的取值,计算y=(c-ax)/b。判断y是否为非负整数,如果是,则找到一个解组。统计解组的数量。 代码示例: count = 0 for x in range(c//a + 1): y = (c - a * x) / b if y >= 0 and y.is_integer(): count += 1 print(count) 解法二:扩展欧几里得算法 另一种更加高效的解决方法是使用扩展欧几里得算法。 我们可以通过求解ax + by = gcd(a, b)的特解来得到原方程的解。 首先,使用扩展欧几里得算法求解gcd(a, b)=ax0 + by0的特解。如果c % gcd(a, b) != 0,那么原方程没有解;如果c % gcd(a, b) == 0,那么方程有无限多个解。 特解x0和y0满足c' = a*x0 + b*y0,其中c' = c / gcd(a, b)。 然后,原方程的解组数量为count = c' / gcd(a, b) + 1。 代码示例: import math gcd = math.gcd(a, b) c_prime = c / gcd if c_prime.is_integer(): count = int(c_prime) + 1 print(count) else: print("无解") 以上就是两种解决不定方程ax + by = c的方法,分别是暴力法和扩展欧几里得算法。希望能帮到你!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值