趋吉避凶
码龄6年
关注
提问 私信
  • 博客:50,113
    问答:584
    50,697
    总访问量
  • 21
    原创
  • 285,682
    排名
  • 4,355
    粉丝
  • 87
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2019-03-18
博客简介:

趋吉避凶的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    778
    当月
    6
个人成就
  • 获得135次点赞
  • 内容获得86次评论
  • 获得343次收藏
  • 代码片获得2,030次分享
创作历程
  • 1篇
    2024年
  • 2篇
    2023年
  • 12篇
    2021年
  • 5篇
    2020年
  • 1篇
    2019年
成就勋章
TA的专栏
  • LLM
    2篇
  • NLP
    4篇
  • Docker
    1篇
  • 机器学习
    1篇
  • python库
    4篇
  • 排序算法
    2篇
  • Neo4j
    4篇
  • Linux
    1篇
  • msyql
    2篇
兴趣领域 设置
  • 开发工具
    pycharm
  • 人工智能
    机器学习深度学习神经网络自然语言处理tensorflow知识图谱pytorchbertnlp
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

LLM微调系列——Qwen微调教程

作者在微调Qwen时遇到的一些坑以及一点经验 作者在微调Qwen时遇到的一些坑以及一点经验。
原创
发布博客 2024.02.04 ·
4075 阅读 ·
16 点赞 ·
3 评论 ·
27 收藏

第一章: LangChain 生成与加载知识库并根据匹配内容回答问题

本文主要介绍了基于LangChain的文本内容切分、向量生成、存储、加载以及Prompt拼接与文本大模型输出连接的方法。LangChain是一种用于文本大模型的框架,通过对文本内容进行切分,生成向量,存储向量,加载向量等步骤,实现文本内容的处理和建模。在LangChain框架下,我们可以将文本内容切分为多个片段,并使用向量表示每个片段。这些向量可以存储在计算机内存中,也可以存储在磁盘上。我们可以将问题与匹配到的知识与Prompt进行拼接,并将其输入到文本大模型中进行处理和输出。
原创
发布博客 2023.10.24 ·
1322 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

Docker容器打包部署

Docker 容器是一种轻量级、可移植的虚拟化技术,可以打包应用程序和所有其依赖项到一个隔离的运行环境中。Docker 容器使用 Docker 镜像作为基础,可以快速创建和部署应用程序。Docker 容器可以通过 docker run 命令启动,并挂载本地目录,实现应用程序的部署。
原创
发布博客 2023.07.11 ·
1737 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

解码策略(搜索)

文章目录beam search(集束搜索)Exhausitive Search(暴力搜索)greedy search(贪心搜索)总结beam search(集束搜索)而beam search是对贪心策略一个改进。思路也很简单,就是稍微放宽一些考察的范围。在每一个时间步,不再只保留当前分数最高的1个输出,而是保留num_beams个。当num_beams=1时集束搜索就退化成了贪心搜索。优点:综合了Greedy search和Exhausitive Search,在他们中间取取平衡,beam si.
原创
发布博客 2021.10.24 ·
578 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

SVM(支持向量机)

文章目录定义直观理解定义支持向量机(英语:support vector machine,常简称为SVM,又名支持向量网络)是在分类与回归分析中分析数据的监督式学习模型与相关的学习算法。给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM训练算法创建一个将新的实例分配给两个类别之一的模型,使其成为非概率二元线性分类器。SVM模型是将实例表示为空间中的点,这样映射就使得单独类别的实例被尽可能宽的明显的间隔分开。然后,将新的实例映射到同一空间,并基于它们落在间隔的哪一侧来预测所属类别.
原创
发布博客 2021.10.21 ·
963 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

CPU加载模型与GPU加载模型结果不同

发布问题 2021.08.13 ·
1 回答

Flask允许跨域请求

文章目录一、使用flask-cors库二、使用方法全局模型总结一、使用flask-cors库安装flask-cors库pip install flask-cors二、使用方法全局模型from flask_cors import *app = Flask(__name__)CORS(app, supports_credentials=True)总结工作随笔,希望可以帮助到大家!如有不足之处,请多多指教!...
原创
发布博客 2021.08.01 ·
1727 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

python排序算法-插入排序

文章目录原理动图演示二、代码1.插入排序总结原理插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序,因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。动图演示二、代码1.插入排序代码如下(示例):def insertion_sort(nums): """ :param nums: 无序数组 :return: """
原创
发布博客 2021.04.17 ·
808 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

python排序算法-冒泡排序优化

文章目录原理动图演示二、代码1.冒泡排序基本2.冒泡排序优化3.冒泡排序最终优化总结原理冒泡排序是一种交换排序,核心是冒泡,把数组中最小的那个往上冒,冒的过程就是和他相邻的元素交换。重复走访要排序的数列,通过两两比较相邻记录的排序码。排序过程中每次从后往前冒一个最小值,且每次能确定一个数在序列中的最终位置。若发生逆序,则交换;有俩种方式进行冒泡,一种是先把小的冒泡到前边去,另一种是把大的元素冒泡到后边。动图演示二、代码1.冒泡排序基本代码如下(示例):def bubble_sort(
原创
发布博客 2021.04.13 ·
1185 阅读 ·
4 点赞 ·
3 评论 ·
5 收藏

Linux系统下neo4j如何设置开机自启动?

发布问题 2021.03.10 ·
1 回答

Python创建知识图谱

文章目录前言一、环境搭建二、使用步骤1.引入库2.数据展示3.读入数据4.连接图数据库5.创建知识图谱6.知识图谱展示总结前言使用Python读取CSV数据生成简易的知识图谱一、环境搭建pandas==1.1.5py2neo==2021.0.1若py2neo安装失败请升级pip二、使用步骤1.引入库import pandas as pdfrom py2neo import Graph, Node, Relationship2.数据展示事故灾害的一些数据:博主提供一百条数
原创
发布博客 2021.03.07 ·
12089 阅读 ·
29 点赞 ·
28 评论 ·
192 收藏

Neo4j-Cypher函数

文章目录shortestPath()timestamp()总结shortestPath()最短路径查找Cypher案例:MATCH (at:accident_type {name:'伤害事故'}),(it:accident_unit{name:'江苏省通州市金盛公司聚醚车间'}),p = shortestPath((at)-[*..15]-(it)) RETURN p返回'伤害事故'到'江苏省通州市金盛公司聚醚车间'的最短路径这意味着:找到两个节点之间的一条最短路径,只要该路径最大为15个
原创
发布博客 2021.03.02 ·
295 阅读 ·
5 点赞 ·
2 评论 ·
1 收藏

Ubuntu18.04安装Neo4j数据库

文章目录前言配置Java环境安装Neo4j数据库总结前言Neo4j是一个高性能的,NOSQL图形数据库,它将结构化数据存储在网络上而不是表中。它是一个嵌入式的、基于磁盘的、具备完全的事务特性的Java持久化引擎,但是它将结构化数据存储在网络(从数学角度叫做图)上而不是表中。Neo4j也可以被看作是一个高性能的图引擎,该引擎具有成熟数据库的所有特性。程序员工作在一个面向对象的、灵活的网络结构下而不是严格、静态的表中——但是他们可以享受到具备完全的事务特性、企业级的数据库的所有好处。配置Java环境
原创
发布博客 2021.03.01 ·
428 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

开发环境:ERROR: JAVA_HOME is incorrectly defined as PATH (the executable PATH does not exist)

文章目录报错信息错误背景错误原因解决过程解决方法总结报错信息ERROR: JAVA_HOME is incorrectly defined as PATH (the executable PATH does not exist)PATH:根据各自的报错信息而定错误背景启动neo4j图数据库,提示报错错误原因根据报错信息,是在PATH中找不到JAVA_HOME,但是在/etc/profile中我定义的路径并非它的目标路径。查找资料后发现,Linux有两个存放环境变量的文件1、/etc/pro
原创
发布博客 2021.01.24 ·
2373 阅读 ·
2 点赞 ·
5 评论 ·
2 收藏

MySQL事务锁:Lock wait timeout exceeded; try restarting transaction

项目场景:Python在批量修改MySQL数据库时报错问题描述:单纯的修改语句导致:Lock wait timeout exceeded; try restarting transaction(锁等待超时;试着重新启动事务)原因分析:可能导致的背景:1、在同一事务内先后对同一条数据进行插入和更新操作;2、多台服务器操作同一数据库;3、瞬时出现高并发现象;问题原因:1、在高并发的情况下,Spring事物造成数据库死锁,后续操作超时抛出异常。2、Mysql数据库采用InnoDB模式
原创
发布博客 2021.01.17 ·
839 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

Django框架报错:NameError: name ‘_mysql‘ is not defined

报错信息NameError: name '_mysql' is not defined报错原因django下调用MySQLdb,MySQLdb与python3.x冲突解决方法配置文件目录下的__init__.py文件下加入以下代码:import pymysqlpymysql.install_as_MySQLdb()使用pymysql替代MySQLdb总结工作随笔,希望可以帮助到大家!...
原创
发布博客 2021.01.06 ·
3463 阅读 ·
13 点赞 ·
0 评论 ·
7 收藏

python判断IP地址是否在线

判断IP地址是否在线代码如下:import osimport platformdef decide_server(): # 获取操作系统 sys = platform.system() # IP地址 IP = "www.baidu.com" print(sys) if sys == "Windows": # 打开一个管道ping IP地址 visit_IP = os.popen('ping %s' % IP)
原创
发布博客 2021.01.04 ·
2395 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

数据、算法、模型三者缺一不可

文章目录前言一、数据标注数据未标注数据二、算法有监督学习(supervised learning)无监督学习(unsupervised learning)半监督学习(semi-supervised learning)三、模型总结前言一个人工智能项目,当中最重要的究竟是数据、算法、模型呢?当然是三者缺一不可,数据是构建的基础也是坚实的后盾,算法与模型是使效果更理想的方法。一、数据数据是起点,因为它是非常有用的资产。数据分为两种:标注数据与未标注数据标注数据标注的数据通常采用一组未标注的.
原创
发布博客 2020.12.28 ·
1288 阅读 ·
3 点赞 ·
0 评论 ·
1 收藏

MYSQL查询时间段数据

文章目录前言一、函数简介二、SQL语句总结参考链接前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、函数简介DATE_FORMAT()函数用于以不同的格式显示日期/时间数据。CURDATE()函数返回当前的日期。TO_DAYS(date)给定的日期,返回一个天数(以0年以来的天数)。NOW()函数返回当前系统的日期和
原创
发布博客 2020.12.23 ·
1467 阅读 ·
4 点赞 ·
9 评论 ·
3 收藏

Albert处理文本分类任务

文章目录准备工作一、处理数据集二、构建分类任务1.引入库2.配置参数3.读取处理数据4.加载Albert预训练模型5.开始训练6.验证模型总结参考文献准备工作预训练模型下载地址:Albert_Large_zh数据集下载地址:事故灾害多分类数据集(数据集由爬虫获取,如有错误请多多指教)一、处理数据集将预训练模型放入pretraining_model文件夹下。将数据集分成训练集,测试集与验证集,分别为train.txt,test.txt,dev.txt三个,比例一般为7:2:1,放入datase.
原创
发布博客 2020.12.12 ·
2911 阅读 ·
12 点赞 ·
26 评论 ·
25 收藏
加载更多