萌新的旅行
Time Limit: 1 Sec Memory Limit: 128 MBDescription
zstu的萌新们准备去自助旅行,他们租了一辆吉普车,然后选择了n个城市作为游览地点。然后他们惊喜的发现他们选择的城市刚好绕城一个环。
也就是说如果给所有城市按照0,1,2,……,n-1编号,0号城市和n-1号城市是相邻的,并且只能从i号城市去(i+1)%n号城市。
已知每个城市可以充油gas(i),从 i 到 (i+1)%n 城市耗油 cost(i)。
假设这辆吉普车没有的油箱一开始是空的,并且没有上限。
没有油的话自然就不能继续旅行了,这个问题让萌新们非常困扰。作为优秀的acmer,请你帮他们找到一个出发城市,使得萌新们能游览尽可能多的城市(注意最多游览n个城市)。如果有多个可选择的出发城市,那么请把他们按照编号从小到大输出。
Input
第一行有个整数T, 表示测试组数。T≦10。
接下来的每个测试组第一行有个数n, 表示游览的城市数, 2 <= n <= 100000。
第二行有n个数, 第i个数表示在i号城市能充油gas(i),0 <= i <= n-1。
第三行有n个数,第i个数表示从i号城市到(i+1)%n号城市会耗油 cost(i), 0 <= i <= n-1, 0 <= gas(i), cost(i) <= 10000。
Output
对于每个测试组,请在一行中输出可以选择的出发城市编号,并按照编号从小到大输出。
Sample Input
2
2
4 4
5 3
2
2 3
3 4
Sample Output
1
0 1
官方题解 :
方法大体是首先求一个pre(i)为segma(0<=j<=i) gas(i)-cost(i)
为了方便处理,我们把n开两倍,
我们用线段树维护区间区间min{pre(i)}
然后对于每一个位置i,我们要找到i这个位置能跑到多远,就等效于
找到一个pre(j), 使得pre(j)<pre(i-1),那么j-i就是i能最远跑到的地方咯
用单调栈 复杂度O(n)
ps:我懒得去算有多少个数 所以先输出空格 再输出\b(回格) 然后无限WA。。。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
using namespace std;
typedef long long ll;
ll gas[200005],cost[200005],ans[200005];
struct node{
ll num,lab;
}e[200005];
stack<node>sp;
int main(){
ll t;
scanf("%lld",&t);
while(t--){
while(!sp.empty())sp.pop();
ll n,i,j;
scanf("%lld",&n);
for(i=1;i<=n;i++)scanf("%lld",&gas[i]);
for(i=1;i<=n;i++)scanf("%lld",&cost[i]);
for(i=n+1;i<=2*n;i++){
gas[i]=gas[i-n];
cost[i]=cost[i-n];
}
for(i=1;i<=2*n;i++){
e[i].num=e[i-1].num+gas[i]-cost[i];
e[i].lab=i;
}
e[2*n].lab=2*n;
e[2*n].num=1;
for(i=1;i<=31;i++)e[2*n].num*=2;
e[2*n].num*=-1;
sp.push(e[2*n]);
for(i=2*n-1;i>=n;i--){
while(e[i].num<=(sp.top()).num)sp.pop();
sp.push(e[i]);
}
ll sj=0,l=0;
for(i=n-1;i>=0;i--){
while(e[i].num<=(sp.top()).num)sp.pop();
node f=sp.top();
sp.push(e[i]);
ans[i]=min(f.lab-i,n);
sj=max(ans[i],sj);
}
for(i=0;i<n;i++){
if(sj==ans[i])l++;
}
ll p=0;
for(i=0;i<n;i++){
if(sj==ans[i]){
printf("%lld",i);
p++;
if(p==l)printf("\n");
else printf(" ");
}
}
}
return 0;
}