BZOJ 4760 dp

本文介绍了一款名为“蹄子剪刀布”的游戏,并提出一个算法问题:如何确定一头聪明但懒惰的奶牛Bessie在面对一系列对手动作时,通过有限次数的变化策略来最大化获胜次数。文章详细解释了问题背景、输入输出样例及解决方案。
摘要由CSDN通过智能技术生成

Hoof, Paper, Scissors

Time Limit: 10 Sec   Memory Limit: 128 MB
[ Submit][ Status][ Discuss]

Description

You have probably heard of the game "Rock, Paper, Scissors". The cows like to play a similar game th
ey call "Hoof, Paper, Scissors"
你可能玩过石头剪刀布这个游戏,奶牛们也喜欢玩类似的游戏,叫做“蹄子剪刀布”
The rules of "Hoof, Paper, Scissors" are simple. Two cows play against each-other. They both count t
o three and then each simultaneously makes a gesture that represents either a hoof, a piece of paper
, or a pair of scissors. Hoof beats scissors (since a hoof can smash a pair of scissors), scissors b
eats paper (since scissors can cut paper), and paper beats hoof (since the hoof can get a papercut).
 For example, if the first cow makes a "hoof" gesture and the second a "paper" gesture, then the sec
ond cow wins. Of course, it is also possible to tie, if both cows make the same gesture.
蹄子剪刀布的规则和石头剪刀布的规则是一样的,蹄子踩碎剪刀,剪刀剪布,布包蹄子
Farmer John wants to play against his prize cow, Bessie, at N games of "Hoof, Paper, Scissors" (1≤N
≤100,000). Bessie, being an expert at the game, can predict each of FJ's gestures before he makes i
t. Unfortunately, Bessie, being a cow, is also very lazy. As a result, she tends to play the same ge
sture multiple times in a row. In fact, she is only willing to switch gestures at most KK times over
 the entire set of games (0≤K≤20). For example, if K=2, she might play "hoof" for the first few ga
mes, then switch to "paper" for a while, then finish the remaining games playing "hoof".
现在FJ想要和他的最机智的奶牛Bessie玩蹄子剪刀布(我也不知道FJ为什么有蹄子),一共进行了N轮(N<=1e5),B
essie,作为一个奶牛,非常的怠惰,无论她出什么,都喜欢连续的出,最多变化K次(K<=20),也就是说,对于她
所出的,记为序列f(i),记sum=有多少个i满足f(i)!=f(i-1)(i>1),而她的sum一定不会超过k
Given the sequence of gestures FJ will be playing, please determine the maximum number of games that
 Bessiecan win.
现在FJ已经给出了他出的东西,你要告诉Bessie,在不确定她出的东西的情况下,她最多能赢多少次

Input

The first line of the input file contains N and K.
输入数据第一行为N,K
The remaining N lines contains FJ's gestures, each either H, P, or S
接下来N行表示FJ所出的东西,H表示hoof,P表示paper,S表示Scissors

Output

Print the maximum number of games Bessie can win, given that she can only change gestures at most KK times.
输出在变化不超过K次的前提下,最多能赢多少次

Sample Input

5 1
P
P
H
P
S

Sample Output

4


题解:定义dp[i][j][k]为前i场转换j次当前出的是k能赢的场数

状态转移方程就确定了


#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#include<cmath>
using namespace std;
typedef long long ll;
int a[100005],dp[100005][25][4],sum[100005][4];
int judge(int a,int b){
	if(a==1)return b==2;
	if(a==2)return b==3;
	return b==1;
}
int main(){
	char c[3];
	int n,k,i,j;
	scanf("%d%d",&n,&k);
	for(i=1;i<=n;i++){
		scanf("%s",c);
		if(c[0]=='P')a[i]=1;
		else if(c[0]=='H')a[i]=2;
		else a[i]=3;
		sum[i][1]=sum[i-1][1];
		sum[i][2]=sum[i-1][2];
		sum[i][3]=sum[i-1][3];
		sum[i][a[i]]++;
		dp[i][0][1]=dp[i-1][0][1]+judge(1,a[i]);
		dp[i][0][2]=dp[i-1][0][2]+judge(2,a[i]);
		dp[i][0][3]=dp[i-1][0][3]+judge(3,a[i]);
	}
	for(i=1;i<=n;i++){
		for(j=1;j<=k;j++){
			dp[i][j][1]=max(dp[i-1][j][1],max(dp[i-1][j-1][2],dp[i-1][j-1][3]))+judge(1,a[i]);
			dp[i][j][2]=max(dp[i-1][j][2],max(dp[i-1][j-1][1],dp[i-1][j-1][3]))+judge(2,a[i]);
			dp[i][j][3]=max(dp[i-1][j][3],max(dp[i-1][j-1][2],dp[i-1][j-1][1]))+judge(3,a[i]);
		}
	}
	cout<<max(dp[n][k][1],max(dp[n][k][2],dp[n][k][3]))<<endl;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值