stat_模型评估方法

本文介绍了几种常用的模型评估方法,包括均方误差(MSE)、均方根误差(RMSE)、均方根对数误差(RMSLE)、平均准确率(MAP)等指标,并解释了这些指标的计算方式及其应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

常用模型评估方法

Ref:
SSE,MSE,RMSE,R-square

均方误差(Mean Squared Error, MSE)

i=1n(wTx(i)y(i))2n(1)

均方根误差(Root Mean Squared Error, RMSE)

平方绝对误差(Mean Absolute Error, MAE)

i=1n|wTx(i)y(i)|n(3)

均方根对数误差(Root Mean Squared Logarithmic Error, RMSLE)

i=1n(logwTx(i)+1y(i)+1)2(4)

平均准确率(Mean Average Precision, MAP)

K值平均准确率(Average Precision at K metric, APK)

R-平方系数(R-squared coefficient)

准确率-召回率(PR)曲线

ROC(真阳TPR,假阳FPR)曲线和AUC(ROC面积)

行内公式,数学公式为:

Γ(n)=(n1)!nN
块级公式:

2323434(1,2,3)

x=b±b24ac2a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值